A Formal Model of
Compositional Network Architecture

September 21, 2023

1 Introduction

This document is a companion to The Real Internet Architecture: Past, Present,
and Future Evolution. It presents a declarative formal model of compositional
network architecture, written in the Alloy language (see [2] and alloytools.org).
Alloy is a very well-designed modeling language—a seamless blend of first-order
logic, relational algebra, object orientation, and temporal logic. The Alloy Ana-
lyzer incorporates state-of-the-art technology for logical solvers. To learn about
the language and its tools, please refer to Alloy documentation and tutorials.

The purposes of the formal model of compositional network architecture
include:

e to ensure that compositional network architecture has a sound formal
foundation;

e to support a variety of validation, verification, implementation, and opti-
mization activities;

e to help network designers “future-proof” their designs by understanding
the true range of possible network behaviors and network architectures;

e to relate compositional network architecture to other, less general and
more computationally efficient, formal models of networking.

The architecture of individual networks, as presented in Chapter 2, is mod-
eled in §2 on basic networks, §3 on the traffic model, and §4 on group commu-
nication. The operators for composing networks, as presented in Chapters 3
and 4, are modeled in §5. Simplifying assumptions, introduced when needed,
are summarized in §6. Finally, §7 discusses the limitations of the current model
and how it might be extended.

The subject of network architecture is large, the formal model is correspond-
ingly complex, and the amount of detail is necessarily limited. To maintain focus
on what can be accomplished with a limited model, we introduce three guid-
ing principles that have been followed. The underlying motivation for these

principles is to make the architecture as general as possible, without arbitrary
and unnecessary constraints. The principles are needed because they expose
many truly subtle issues, which could easily be missed without guidance. The
principles are also summarized in §6.

Most people think of formal models as something used for verification—in
particular, something used to verify that an implementation is correct. But
even before verification comes wvalidation, which is the partly-formal, partly-
informal process of comparing a formal model to the real world it is intended
to describe. Is it accurate and precise? Is it comprehensible, i.e., does it mean
what we think it means? Is it general or extensible? Is it useful? The formal
model has been systematically and thoroughly validated, and this document
describes some validation methods and the very extensive Alloy code devoted
to validation.

This is a living document. Both the Alloy model and this document are
works in progress, and will be updated as we learn more and do more.

Eventually there will be a companion document on the reference implemen-
tation of compositional network architecture, which is a program written in
Lucid [3]. The Lucid language compiles to P4 [1], which in turn compiles to
programmable packet-processing hardware. We use Lucid and P4 to show that
compositional network architecture is inherently efficient. Nevertheless, hard-
ware constraints are not friendly to generality, so the Lucid implementation is
necessarily less general than the Alloy model.

2 Basic networks

2.1 Machines and distributed systems

The file dist.als (dated 1 October 2022 or later) formalizes simple relationships
among distributed systems and machines, mainly (i) all distributed systems
have a scope that is a set of machines; (ii) on each machine in the scope of a
distributed system, there is at least one module of the system; (iii) a network
is a distributed system with an administrative authority that is a legal person,
and a state that is a network state. None of this is very useful so far, so it is
included only for completeness.

2.2 Components of a network
2.2.1 Network state

The remainder of §2 refers to the file net.als (dated 3 March 2023 or later).
In the text we refer to line numbers, and net.num is a non-executable version
of net.als with these line numbers.
The file begins with declarations of the types (basic types and object signa-
tures) used (lines 4-72). We will refer back to these declarations when necessary.
The most important thing in this file is the declaration of a NetworkState
object, in lines 81-184. This definition has two parts. In the first part, up to

line 95, fields of the object are declared. The second part consists of Boolean
expressions, which must evaluate to true for any instance of the object.

In terms of real-world meaning, these Boolean expressions fall into two cat-
egories. Some are constraints, expressing the necessary relationships and corre-
lations among different parts of the network state. The actual constraints exist
in the real world, so the real world cannot violate them, and our formalization
of them is simply ensuring that our formal objects cannot violate them either.
For example, if a Link is a component of a network, then at least one of its end-
points is a member of the network (lines 103-104). There is also one constraint
placed outside the object declaration: on lines 78-79, the fact states that each
instance of NetworkState has a unique networkName. This must be true in the
real world of networks compliant with compositional network architecture, or
some things will not work right.

The other Boolean expressions are in the category of derivations, and they
match up with derived object fields (see comments on the declarations of these
fields). The contents of a derived field are computed from other, non-derived,
fields, using the Boolean expression as the computational rule. So non-derived
fields describe a constrained real world, while derived fields represent conse-
quences of the non-derived fields. Derived fields are used as shorthands in other
expressions.

2.2.2 Members and links

A network has a set of members (line 84), each of which belongs to a primitive
type Name. This declaration represents a major simplifying assumption in the
model. In compositional network architecture, there are no constraints on how
members of a network are named—a member can have no name, one name, or
many names, and none of them need be unique. In this model, every member
of a network must have a name that is unique within the network. (Eventually
we will show that it can have non-unique group names as well.) Furthermore,
the model makes no distinction between the member itself (which is a module
on a machine) and the unique name of the member. The consequences of this
assumption are significant, and will be discussed in several subsequent sections.

There are two member subsets, users and infras (user and infrastructure
members, respectively). Their declaration on line 85 includes the constraint that
they are disjoint, and the constraint on lines 98-99 says that each member is
either a user or infrastructure member. Members, users, infras, and other fields
of a network state discussed in this subsection are all illustrated in Figure 1.

A network Link is a complex object, defined on lines 42-59. All links in the
formal model are unidirectional, because that is necessary for computation of
reachability. So a link has a single sndr (sender member) and a sndrIdent,
which is its local identifier at the sender member. Links can be group links,
but we will not discuss any aspect of group communication until §4. For now,
as a temporary simplifying assumption, think of a link as having a rcvrs field
which is an individual receiver member, and a field rcvrIdents that maps the
receiver to the link’s local identifier at the receiver.

ko

i1 i0 k3
k1

members ={ m0, m1, m2 } infras={ m1 } users={ m0, m2 }
links ={ kO, k1, k2, k3 } onelLinks ={ kO, k1 } twolinks={ k2, k3 }
inLinks = { (mO, i1, k1), outLinks = { (mO, i0, k0),
(m1,i1, ko), (m1,i0, k1),
(m1,i2, k3), (m1,i2, k2),
(m2,i0, k2)} (m2,i0, k3)}

Figure 1: Members and links of a small network.

We model two-way point-to-point links with the help of the mode field, which
can have values OneWay and TwoWay (along with other values discussed in §4).
There are disjoint link sets oneLinks and twoLinks. The derivations on lines
100-102 say that these sets contain the links with mode OneWay and TwoWay,
respectively. Furthermore, the constraint on line 107 says that for each link in
twoLinks, there is another link in twoLinks that is its reverse. The predicate
ReverseLink is defined in lines 60-63; in a pair of reverse links, the sender of
one is the receiver of the other, and vice-versa. In other words, the real-world
phenomenon of a two-way link is modeled with a matching pair of one-way links.

Lines 108-125 express constraints on link identifiers. At each member, each
link of which it is an endpoint must have a different link identifier. There is
an exception for a reverse pair in twoLinks, because at each endpoint, the two
links share the same link identifier. This does not cause confusion because one
is an incoming link and one is an outgoing link.

The outLinks and inLinks fields (each a relation) encode the same informa-
tion as the network’s set of links. They are derived from the links because they
present the information in a way that is more convenient for many modeling
purposes.

2.3 Validation and network topology

The concept of validation was introduced in §1. Even though validation is
fundamentally informal, automated tools can still be a significant help. This
is especially true with a declarative (constraint-based) language such as Alloy,
because we can inadvertently write such strong constraints that they can never
be satisfied (formally, the model is inconsistent). Equally likely, we can write
such strong constraints that the real-world examples we care about do not satisfy
its constraints, and therefore cannot be instances of the model. To prevent such

problems, it is important to use the Alloy Analyzer to make sure that important
real-world networks are instances of the model.

Chapter 2 of the book has diagrams of common network topologies, and we
use these for validation. Specifically, there is a section of net.als (lines 186-
253) defining predicates for a number of network topologies. For each topology,
if a network satisfies its rules, then the NetworkState object satisfies the corre-
sponding predicate. To validate the model using these predicates, we formulate
“tests” that are predicates formed from various combinations of the topology
predicates, and ask the Alloy Analyzer to find instances of them, by executing
the commands in lines 292-334. If the test predicate is inconsistent (has no
instance), there is usually a modeling bug somewhere. If the predicate has an
instance, we check it to make sure it looks right.

Of the simple, regular topologies defined here, the spanning tree is the most
complex, and it is difficult to model without some additional fields in the network
state. So instead of a predicate there is a declaration of a special kind of
NetworkState object with extra fields (lines 234-253), and the constraints we
would otherwise write in a predicate are written as part of the object signature.

A network can include external links, which are links with endpoints both in-
side the network and outside the network. The topological predicate No_external-
links distinguishes networks without these.

§6 in Chapter 2 says that topological properties can represent facts or as-
sumptions about the user machines served by a network, and can also represent
design decisions about the arrangement of infrastructure machines. The topo-
logical properties provided here are general, each applying to many specific
networks. Other topological properties, used for example in design, might be
very specific—they might even name specific members on individual machines.

2.4 Packets

In the current formal model, there is a minimal formalization of sessions. They
appear primarily in session identifiers (SessionIdents), which are atomic ob-
jects (line 14).

Packets are represented only by their network headers (which of course are
not unique identifiers of packets). As a simplifying assumption, network footers
are not modeled. A network header is a NetHdr object, declared in lines 28-32
with the fields defined in Chapter 2. Currently the protocol field has only
general information, but the Protocol signature can be expanded whenever
needed.

Two other model pieces accompany the declaration of a NetHdr. There is a
fact (lines 33-37) telling us that NetHdrs are “records,” meaning that there is
only one NetHdr object with a given set of field values. This prevents spurious
problems with headers that are not equal (they are different objects), but are
the same from a networking viewpoint (they have the same field values). There
is also a convenient predicate ReverseNetHdr (lines 38-40) for checking that two
headers reverse each other.

2.5 Network behavior

The forwarding behavior of a network is described by three tables, the acquire-
Table, forwardTable, and transmitTable, declared in lines 90-93. Note that
the acquireTable and forwardTable are defined as separate objects (lines 69-72)
rather than simple relations. This is due to Alloy only, and is not semantically
important. In the internals of Alloy, the transmitTable is a set of four-tuples.
If acquireTables and forwardTables were defined in the same way, they would
be sets of five-tuples, which must be handled so inefficiently in Alloy that they
really cannot be used.! Also note that there are some options in the tables that
will not be explained until §5.

As you will see, the model distinguishes between sending and transmitting
a packet, and between receiving and acquiring a packet. A packet is sent once,
and either dropped on the way or received once.? In contrast, a packet being
forwarded through a network is acquired by every forwarder on its path, and
transmitted by every forwarder on its path.

The semantics of the tables is described operationally, as a flowchart, in
Figure 2. In the figure, the attributes of each packet include its header and fields
of metadata attached to it (or removed from it) as it flows through a network
member. So a packet enters the forwardTable with an inLink and a netHdr.
If it is forwarded, the forwardTable replaces its inLink with the identifier of
an outgoing link outLink. The transmitTable removes the outLink metadata,
leaving only the netHdr.

packet

(inLink,

nettidr) acquire acquireCmd =
from ' Table Forward packet from OS
incoming packet (inLink = Self,
link no (inLink, netHdr)

acquireCmd = te?]t::'e netHdr)
Receive y
packet forward
(netHdr) d Table
rop
table entry = outLink
to OS packet
no table (outLink,
entry or netHdr)
drop table engy = packet
op transmit (nettdr)
Table to ”
outgoing
link

Figure 2: Operation of a network member with no network composition.

IThe reason lies deep in the bowels of logic solvers, so it is not easily explained, and not
confined to Alloy.

2If a protocol like TCP requests retransmission of a packet, then the retransmission, being
sent at a different time, is a different packet.

Each table operates as a little packet processor inside the network member,
which is controlled by the data in the table. If a packet is acquired from an in-
coming link, its inLink and netHdr are matched in the acquireTable. If there is
no match, the packet is dropped. If there is a match, the table yields a command
that steers the packet either toward the operating system or the forwardTable.
The forwardTable processor matches a packet’s netHdr and inLink in the for-
wardTable, yielding the identifier of an outgoing link outLink or the command
Drop. If there is an outLink, then the packet goes to the transmitTable. If the
yield is Drop or there is no match in the table, then the packet is dropped.

In this version the transmitTable has no important information, and its
processor only removes metadata from packets before they leave the network
member. There will be an expanded version of this table in §5, in which the
transmitTable has greater operational importance.

You may have noticed that if these tables were instantiated for real networks,
they would be extremely large. This is not a problem because the tables are
merely being described for formal purposes, and will never be fully instantiated.
Even the tables for forwarding, which must be implemented in some form, are
not implemented like this. For example, in real forwarding tables, header pat-
terns with name prefixes and wildcards substitute for explicit enumeration of
all possible headers.

2.6 Reachability
2.6.1 The meaning of the model

This section concerns the meaning or semantics of net.als, which is captured
by its derived reachable relation. Formal methods are subtle, and it will be
necessary to explain the precise significance of this relation in several steps.

Our Alloy model leverages the conventional separation in networking be-
tween the “control plane” and the “data plane.” For each network, the formal
representation of its state contains primarily its current topology and the cur-
rent state of its tables—data structures computed by the control plane and
interpreted by the data plane. The meaning we assign to the network state is
based on three fundamental assumptions:

e The model contains nothing but static network states, i.e. snapshots of
what the current state of a network might be.

e We assume that all of the network components are functioning. If in the
real world a link has failed, then we assume the link simply does not exist
in the current network state. The same is true for network members.

e The formal semantics assumes that for each network member, there is an
implemented “data plane” that will perform the packet processing implied
or instructed by its tables. The reachable relation summarizes, based on
a current network state, how the network would behave over a period
of observation in which the network state does not change. Given full

information about a situation, the model tells us exactly what the network
will do. If there is uncertainty in what the model tells us, it is because we
have given it less-than-complete information.

There are three reasons for this approach: simplicity, simplicity, and sim-
plicity. Any of these assumptions can be removed, and formal methods exist to
reason about models without the assumption, but the result may become too
complex for comprehension or efficient formal reasoning. Put another way, if
you want a formal model with fewer simplifying assumptions, you should write
one. Put yet another way, the subject matter of “all possible network architec-
tures” is very broad. With narrower subject matter, more detailed or dynamic
models become useful, as mentioned in §7.

2.6.2 The reachable relation

The behavior of a network in transmitting and forwarding packets is captured
by its reachable relation, which is derived from other fields of a network object.
Given all the assumptions made in the last subsection, the only remaining design
freedom is in how much information to take into account.

Because the amount of information in net.als has been minimized deliber-
ately, there is actually only one choice to make. Do we take into account the
distinction between user members and infrastructure members? For example,
we could include forwarding by infrastructure members, but not by user mem-
bers. On grounds of generality, we do not take this distinction into account.

In subsequent Alloy files there will be more state information to use, and
other reachability relations defined for more specific purposes. Our purpose
now is to define the most basic version of reachability for individual networks.
The principle is that all subsequent relations about individual networks, using
more information, should be subsets of this basic relation. Note that the basic
reachable relation includes group communication—for more on this topic, see
84. The basic relation has this declaration:

95 reachable: NetHdr -> members -> members -- derived
For a tuple (h, m0, m1) in this relation,® the meaning is as follows:

If a member m0 transmits a packet with header h (on any outgoing

link), then that packet will be acquired by ml (on some incoming
link).

With this semantics, there is uncertainty about whether m0 will transmit such
a packet, but if it does, it is certain that the packet will be delivered to m1 and
acquired by it.

The definition of reachable begins with an auxiliary relation oneStep, de-
clared and defined as follows:

3The comma notation for tuples is the easiest to use in text, but it is not Alloy notation
(see below).

94 oneStep: NetHdr -> links -> links -- derived

170 oneStep = { h: NetHdr, disj k, k": links |

171 some m: members, kin, kout: LinkIdent |

172 (m -> kin -> k) in inLinks

173 & (m -> kout -> k") in outLinks

174 && (kin -> h -> Forward) in (m.acquireTables).arows
175 & (kin -> h -> kout) in (m.forwardTables).frows 1}

This relation describes the forwarding behavior of individual network members.
For a member to forward a packet, it must have an incoming link and an outgoing
link (lines 171-173). Note that (m -> kin -> k) is a three-tuple of individuals,
which is written in Alloy as the Cartesion product (operator: single arrow) of
three singleton sets. To forward a packet with header h, the acquireTable must
say to forward it, and the forwardTable must map it from an incoming link to
an outgoing link. For example, let’s imagine a header h with src = A and dst =
D. In the network illustrated in Figure 3, these are the table contents relevant
to header h:

acquireTable forwardTable
B: 1 ->h -> Forward B: 1 ->h >0
C: 1 ->h -> Forward C: 1->h >0

so the tuples in oneStep beginning with h are { (h, k1, k2), (h, k2, k3) }. Note
that oneStep need not use the transmitTable, as the transmitTable is giving
information about how to transmit on a link, rather than whether to transmit
on a link.

@0 k1 1}@() k2 @O k3 @

i 4
i 4

Figure 3: A simple network.

Here is how reachable uses oneStep, in a draft version:

reachableDraftl = { h: NetHdr, m, m": members |
some k, k": links |
m in k.sndr && m" in k".rcvrs
&& (k -> k") in ~(h.oneStep) }

By joining a particular header with oneStep (on the last line), we get a binary
relation on links. The transitive closure (carat) of this binary relation gives
all forwarding paths for that header. Applying this definition to our particular
header h, we get the following results:

“(h.oneStep) h.reachableDraft
k1 -> k2 A ->C
k1 -> k3 A ->D
k2 -> k3 B ->D

This is an odd relation—it says that the packet reaches C and D from A, but
not B from A. It also says that the packet reaches D from B, but not C from
B. The problem is that the relation includes only paths with at least two links
and one forwarding step. Here is a better definition, allowing paths with only
one link:

reachableDraft2 = { h: NetHdr, m, m": members |
some k, k": links |
m in k.sndr && m" in k".rcvrs
& (k =%" || (k => k") in “(h.oneStep)) }

.reachable
-> B

QWwWeEr=re=-
(I
vV Vv
OoOoauouQ

This definition represents the paths in a more sensible way, but it still has
a problem: it is too inclusive. With this definition, whenever there is a link
from member m0 to member m1, (h, m0, m1) is in the relation for all headers
h. This holds because the relation does not take into account any information
about whether m0 will transmit any such packet, nor any information about
whether m1 will acquire the packet.

Fortunately, some information is available in the acquireTables and for-
wardTables. By using acquireTables, the definition can exclude packets that
will not be acquired. By using forwardTables, the definition can also exclude
packets that will not be forwarded and then transmitted. Both of these cases
are shown as drop actions in Figure 2. So the final definition is:

176 reachable = { h: NetHdr, m, m": Name |

177 some k, k": links, kin, kout: LinkIdent |

178 (m -> kout -> k) in outLinks

179 &% (m" -> kin -> k") in inLinks

180 &% (h -> kout) in

181 (LinkIdent + NoInLink).((m.forwardTables).frows)
182 && (kin -> h) in ((m".acquireTables).arows).AcquireCmd
183 & (k =k" || (k -> k") in ~(h.oneStep)) }

10

2.7 Validation of network behavior

The reachable relation describes network behavior. In net.als there is a sec-
tion with predicates about (properties of) network behavior (lines 255-270).
No_routing loops is self-explanatory. If a network state satisfies Fully_reachable,
then every member can reach every other member. §4 will explain that packet
replication for forwarding to broadcast or multicast groups appears as multiple
entries in a forwardTable for the same header. So the predicate Only_unicast-
forwarding is true of a network state in which there is no replication.

These predicates are used to make tests for validation, just as the topology
predicates are (lines 336-429). First we check that the predicates can be violated
(lines 340-350). This is important because, if they cannot be violated, then
the model has too many built-in constraints, and does not represent the full
range of possible network behaviors. Then we test that the predicates can
be satisfied (lines 352-377), using topology properties to make sure the Alloy
Analyzer produces interesting instances.

Another powerful validation technique is the use of theorems we call “sanity
checks.” If you can think of a property that all instances should have, just
because that is how the model works, you should write it down as a theorem,
then check that the theorem holds. If it does not, you have learned something
important about your model—usually that it does not quite say what you mean!

Often sanity-check theorems are simple, even trivial. The sanity checks in
this section are not so simple, although there are some trivial ones in the final
section of net.als. As sanity checks, our two theorems (lines 379-429) fill in
some of the table entries for hub-and-spoke networks and one-way rings. Each
theorem then states a reachability property that should be implied by the table
entries.

86.3 of Chapter 2 says that reachability properties are the most prominent
network requirements. For particular networks, reachability properties can be
as general or specific as needed. Either way, they are formalized as properties
of the network’s reachable relation. Often blocking properties are distinguished
from reachability properties, but these are really just reachability properties
stated in the negative—such as “members of type X must not be able to reach
members of type Y,” meaning that no packet header will allow a member of one
type to reach a member of another type.

2.8 Network equivalence

The final property of network behavior in net.als is network equivalence (lines
272-280). Two networks are considered equivalent if they have the same reach-
able relation. We will see the significance of network equivalence in §5.

Like other behavioral properties, network equivalence can be used to fur-
ther validate the reachable relation. The predicates in lines 435-443 find two
networks that are equivalent but have different links (Testl), and two net-
works that are equivalent but have different members (Test2). Like all other
equivalence relations, network equivalence should be reflexive, symmetric, and

11

transitive. The file ends (lines 445-466) with sanity checks that this is so.

3 The traffic model

3.1 Traffic model as requirement

The traffic model of a network is a description of the packets that network
members are expected to send and receive, where “receive” is meant in the active
sense of accepting and passing to some module on the machine, as opposed to
the passive sense of receiving on a wire or other communication channel. The
traffic model of a network can be interpreted as a requirement on the network.
If the traffic model were quantitative (which the Alloy model is not), such as a
bandwidth, it could be a load requirement.

The traffic model is found in the file traffic.als (dated 3 March 2023
or later). For modularity in the Alloy model, it is an optional extension of
net.als. The file begins with the signature of a NetworkStateWithTraffic,
which is a NetworkState object with additional fields. The heart of the traffic
model consists of two relations, a sendTable and a receiveTable, declared as
follows:

12 sendTable: members -> NetHdr -> Sessionldent,
13 receiveTable:
14 members —-> NetHdr -> (Primitive + Extermallink),

where Primitive is a constant, and Externallink will be explained in §5. If
a tuple (m, h, s) is in a network’s sendTable, then member m is expected to
send packets with header h. If a tuple (m, h, k) is in a network’s receiveTable,
then member m is expected to receive packets with header h.

We are dividing the Alloy model into files so it will be more manageable,
but in this case the modularity is a little forced. Each table entry defined above
has a third column or tuple entry, neither of which is necessary for its purpose
as a requirement. They are, in fact, needed primarily for network composition,
as will be explained in §5. In the meantime, Figure 4 uses the new tables to add
slightly more detail to the packet processing. In particular, a packet can arrive
at the network member, from within its own machine, with either a full NetHdr
or just a Sessionldent. If it has just a session identifier, the information in the
sendTable is used to attach a full network header.

3.2 Traffic properties

Lines 53-124 define various properties of traffic, useful for constructing partic-
ular traffic models for validation and verification. For example, a traffic model
is “fully active” if there are sessions between all pairs of members (with various
constraints for the various versions of this predicate). The remaining proper-
ties have comments to explain what they mean. Because there are no explicit

12

packet

packet (sessionldent)

(inLink, or

netHdr) acquire . send packet(netHdr)

Tabl acquireCmd = Tabl
from able Forward packet able from OS
incoming packet (inLink = Self,
link o cquirecmd = Do (inLink, netHdr)
Receive entry netHdr)
packet
(netHdr) ﬂ?l_r;tljéd
drop
table entry = outLink
packet
no table (outLink,
entry or netHdr)
to 05 receive drop table entry = packet
no table Table Drop transmit (netHdr)
entry or »
table entry = Table o
Primitive qutgomg
packet link
(netHdr)

Figure 4: Operation of a network member with no network composition, but with a
sendTable and receiveTable.

sessions in the model so far, sessions are represented by their corresponding
headers in the traffic model.

The traffic properties are used for validation. Lines 194-268 instantiate the
properties in various combinations and in various network topologies, to show
that they are consistent.

3.3 Effective reachability

The traffic model introduces new information, which can be used to define
a narrower form of reachability called “effective” reachability. The relation
effectivelyReachable has the same type as reachable, but a tuple appears in
it only if supported by the traffic model.

Effective reachability is defined with the help of two derived relations:

15 effectiveSend: members -> NetHdr -> Link, —- derived
16 effectiveReceive: members -> NetHdr -> Link, —- derived

Let’s consider the difference between sendTable and effectiveSend. The sendTable
may indicate that a member m sends packets with a header h, but if m’s for-
wardTable does not forward these packets, they will never leave m. However, if
a tuple (m, h, k) is in effectiveSend, we know that m will forward sent packets
with header h, onto outgoing link k. Similarly, a member m’s receiveTable may
indicate that it receives packets with header h, but this will not help unless m
accepts them first. But if a tuple (m, h, k) is in effectiveReceive, we know that
m will accept receivable packets with header h, from incoming link k. With the

13

help of these derived relations, the definition of effectivelyReachable (lines
43-50) is a straightforward variation on the definition of reachable in net.als.

The effectivelyReachable relation adds endpoint information to forwarding
information. According to the principle in §2.6.2, because effectivelyReach-
able is based on more information than reachable, it should be contained in
reachable. The Effective_reachability_inclusion_theorem (lines 178-182)
validates that this sanity check holds. Another consequence of focusing on end-
point information is that reachable includes middleboxes on the path between
sender and receiver, while effectivelyReachable excludes them. This difference is
illustrated by the predicate Effective reach excludes middlebox (lines 184-
192), which constructs a network in which m0 sends packets received by m2. The
packets go through a middlebox m1 on the way; this can be seen in reachable
but not in effectivelyReachable.

Like reachable, effectivelyReachable can be the basis of an equivalence rela-
tion on networks. This is validated for effectivelyReachable in lines 334-357 of
traffic.als.

3.4 Properties of network behavior

Whenever there is a formal requirement for a system, the primary verification
task is to verify that the system satisfies the requirement. For example, the pred-
icate Network_satisfies_communication_demands (lines 130-136) interprets a
network’s send and receive tables as a communication requirement, and com-
pares the network’s behavior (as captured by its effectivelyReachable relation)
to them. If the communication required by the send and receive tables is pro-
vided by effectivelyReachable, then the network is verified correct with respect
to that requirement.

Other behavioral properties defined in this section are Only_authentic-
traffic_delivered (received packets must have authentic source fields in their
headers) and Effective_reachability_is_symmetric. The latter holds if and
only if all the effective sessions are two-way. For validation purposes, these
properties are instantiated in various ways in lines 271-318.

4 Group communication

4.1 Group basics

So far the model includes only point-to-point sessions and links. This section
will explain how anycast and allcast groups are added to the formal model (re-
call from Chapter 5 that allcast groups formalize both broadcast and multicast
groups). Group communication is found in the file group.als (dated 9 March
2023 or later). For modularity in the Alloy model, it is an optional extension of
net.als and traffic.als.

Our first concern is naming. Group names (found in groups) cannot also be
member names (line 14). For each group there is a set of senders and a set of

14

receivers, as determined by the relations groupSenders and groupReceivers
(lines 16-17). Although senders and receivers are not necessarily members of
the network (see §5.1), they cannot be groups. One difference between anycast
groups and allcast groups is that the senders of an anycast group cannot also
be receivers (line 26).

In the book, group names are assigned to network members so that packets
can be delivered to them by means of their group names as well as their unique
names. Thus, a receiver in an anycast group has the anycast name as well as
its unique name, and a receiver in an allcast group has the allcast name as well
as its unique name.

We now introduce the first guiding principle of the formal model, stated in-
formally as “group communication = point-to-point communication.” It means
that, to the greatest extent possible, the capabilities and generality of group
communication channels should be the same as those of point-to-point commu-
nication channels. The purpose of this principle is to guard against unnecessary
exceptions and special cases. It also has the advantage of simplifying the formal
model overall.

As the book emphasizes, there are two kinds of communication channels:
sessions and links. These two will be discussed in separate sections.

4.2 Group sessions

A two-way point-to-point session consists of packets with two different senders.
Allcast sessions can include packets from more than two senders, but the desti-
nation field of all packets is the group name. For example, DHCP sessions are
allcast sessions with potentially several senders.

Allcast service (broadcast or multicast) can be implemented by forwarding,
as follows. A forwarding table is nondeterministic when there is more than
one row (tuple) with a given incoming link and NetHdr, mapping to different
outgoing links. The semantics of nondeterminism is packet replication: the
network member makes as many copies of the packet as there are outgoing
links, and sends one copy to each link. Packet replication makes it possible for
a packet sent once to be received at multiple network members. No extension
of net.als or traffic.als is needed for packet replication, as it is already
included in all previous definitions and constraints.

The model of allcast service is validated in several ways. The predicate
Fully allCast_active (lines 93-105) is satisfied by a network with an allcast
group including all members as both senders and receivers. There is a single
allcast session—it has only one session identifier—in which every network mem-
ber is a sender. It is instantiated by GroupTrafficTestl, and by the trivial
sanity check AllCastTrafficTheorem (lines 214-229). GroupBehaviorTestl
through . ..Test4 (lines 242-279) show how allcast service can be implemented
by forwarding in various network topologies.

Anycast service is used to create point-to-point sessions. There can be true
anycast sessions, which are point-to-point sessions in which the destination of all
messages in one direction is an anycast group name. Obviously, for these sessions

15

to work, messages must be forwarded with session affinity. More commonly,
anycast delivery (without session affinity) is used for the setup message only
of a dynamic session. Then the remaining messages of the session have unique
names as destinations, as explained in Chapter 2.

Anycast is usually implemented with forwarding. The semantic effect of
anycast forwarding is that some network members’ forwarding tables change
over time, so that setup messages destined for the group are spread fairly over
the group members. Anycast semantics cannot be represented directly in our
formal model, for the simple reason that there are no state changes. Anycast
semantics can be represented indirectly, however, by constraining forwarding
tables enough to include all possible choices among the anycast receivers, and to
exclude all impossible choices. Then any reachable relation based on these tables
will represent what can happen with the anycast group, but not necessarily what
will happen in any particular case.

Anycast service is validated with the predicate Fully_anyCast_active (lines
107-122). The exact meaning of this predicate is explained in §5.1.3, where
it is used to illustrate a solution to an important problem. In this file it is
instantiated by GroupTrafficTest2 (lines 231-236), by GroupBehaviorTest6,
which shows that anycast service can be implemented by forwarding, and by
GroupBehaviorTest7, which shows that anycast service can be implemented
by links (lines 290-302).

4.3 Group links

Although it has not been discussed so far, Link objects are general enough to
include links that provide group communication channels (lines 23-24 and 42-48
of net.als):

sig Link {
sndr: Name,
sndrIdent: LinkIdent,
rcvrs: some Name,
rcvrldents: rcvrs —-> one LinkIdent,
mode: OneWay + TwoWay + AllCast + AnyCast,
group: lone Name

}

A link with mode A11Cast or Anycast must have a corresponding group name.
Group links usually have multiple receivers (the qualifier some means one or
more), and the relation rcvrIdents maps each receiver to its local identifier for
the link.

For computation of reachability, all links must be directional. This means
that a “link” represented in the model is actually a link plus direction, which
implies that each link can only have a single sender. Figure 5 shows what this
means for the allcast links implementing an allcast group.

As the figure shows, A is a group sender only, C' and D are group receivers
only, and B is both a sender and receiver. Overall the group has two senders,

16

sender only sender and receiver

receiver only receiver only

Figure 5: Allcast group links fully implementing an allcast group with multiple
senders. Letters w through z represent link identifiers.

so two allcast links are needed to implement it fully with links. Each link has
a single sender and a receiver for each group receiver except the sender (if it is
also a receiver); the semantics of an allcast link is that a packet transmitted by
the sender is replicated and delivered to all link receivers. At each member, all
links implementing the same group share the same link identifier.*

Anycast links are topologically the same as allcast links. The semantics of
an anycast link is that a packet transmitted by the sender is delivered to one
of the receivers. No extension of net.als or traffic.als is needed for group
links, as they are already included in all previous definitions and constraints.
The only problem with group links is the same as with group sessions: because
it takes a dynamic model to give a real anycast semantics, including fair choice
from the receiver set, when a network path contains anycast links its semantics
is weakened from what will happen to what can happen.

In group.als, tests and a sanity check validate network topologies with
group links (lines 158-208). GroupBehaviorTest5 and GroupBehaviorTest7
(lines 281-302) show that both allcast and anycast services can be implemented
with group links alone.

From the model, the capabilities and generality of group communication
channels (at least virtual ones) seem to be the same as those of point-to-point
communication channels, satisfying the principle that “group communication
= point-to-point communication.” The problem with anycast semantics is a
limitation of the current model, not an anomalous characteristic of anycast
sessions or links.

4Because there can be more than one point-to-point link from one member to another, to
maintain the principle that group communication = point-to-point communication, it must
be possible to have two disjoint sets of links implementing the same group. In this case, the
two link sets are distinguished by having different link identifiers at each member.

17

5 Network composition

The three composition operators on networks—bridging, layering, and subduction—
are all defined in compos.als (dated 10 March 2023 or later). As before, line
numbers refer to compos . num.

5.1 Bridging
5.1.1 Bridging basics

A Bridging object (lines 20-67) declares that networks in the set nets are
bridged together. This could also be derived by analysis of the bridging links
in a set of networks, so it is not important by itself. The point is to provide a
place in the model to store the semantics of bridging within a particular set of
networks. This semantics is found in the relation reachableWithBridging. Its
definition is similar to the definition of reachable, but it takes the tables of all
the networks into account.

To get an unambiguous model of bridging, it is necessary to extend the
uniqueness of member names: now all the member names in a set of bridged
networks must be unique (lines 27-28). For the same reason of preventing am-
biguity, the same Link object cannot be used for two different purposes in the
bridged set (lines 50-55). In keeping with the guiding principle of §4, bridging
links can be point-to-point or group links. However, there are several constraints
on group names and membership, which will be explained in See §5.1.3.

In lines 69-84, Bridging objects are extended to use traffic models. In lines
493-695 bridging is validated with various tests and sanity checks.

5.1.2 Guiding principle: Reachability is a structured partial order

This second guiding principle was foreshadowed in §3.3, when we made the point
that the effectivelyReachable relation is contained in the reachable relation.

The semantics of network composition operators are captured in various
reachability relations. All reachability relations have the same type, so set
inclusion is a partial order on reachability relations. The guiding principle
“Reachability is a structured partial order” refers to inclusion in two ways.
First, it says that we should know exactly where each reachability relation fits
into the partial order. Second, it says that we should explain any additional
properties of the partial order in terms of the aspects of network architecture
that produce them. The inclusion ordering with isolated networks and bridging
is shown in Figure 6.

To get a fair comparison between reachableWithBridging and reachability
of isolated networks, for any set of networks nets, we compare reachableWith-
Bridging in a Bridging object with nets to the union of reachable relations in all
the networks of nets. In the figure, all arrows indicate proper inclusion, meaning
that for some nets, the upper relation is larger than the lower relation.

The additional property, shown by annotation in Figure 6, is that we can
use architectural information to predict when a reachability relation for isolated

18

reachableWithBridging

equal if no
bridging links

reachable © - - - -~ -+ - - effectivelyReachableWithBridging

equal if no
bridging links

effectivelyReachable

Figure 6: Inclusion is a partial order on reachability relations. An upward arrow
denotes that the lower relation is included in the upper relation.

networks is equal to the corresponding relation for bridged networks. This
occurs whenever the set of networks nets has no bridging links.

All of these properties are checked in lines 621-695. Containment is a sanity
check (theorem). Proper inclusion is shown by instantiating a predicate that
the upper relation is larger than the lower. A “vestigial” theorem predicts when
the upper and lower relations will be equal.

Finally, there is no ordering between reachable and effectivelyReachable-
WithBridging. Compared to effectivelyReachable, which is included in both,
reachable extends it logically (by not considering the traffic model) and effective-
lyReachableWithBridging extends it structurally (by including bridging links).
Neither extension need be contained in the other, as a test confirms.

5.1.3 The Bridging Closure theorem and the flat Internet

The Bridging Closure theorem, stated and verified in lines 597-619, says that
any set of bridged networks is equivalent (in the exact sense defined in §2.8) to
a single network. In mathematical terms, the set of all networks is closed under
bridging.

This result is significant for Internet architecture. Throughout Chapter 4 of
the book, we refer to “the flat Internet” as a single network, even though it is
a bridging of many networks. The Bridging Closure theorem is the technical
justification for this shorthand.

There is a very significant challenge in defining the formal semantics of the
flat Internet, which is the reuse of private IP names and allcast group names
(for example, the broadcast group name 255.255.255.255) in different IP edge
networks. The reuse of private IP names violates the bridging constraint that
all member names in a set of bridged networks must be unique. We will now
explain how this challenge is overcome with the use of group names.

19

Firstly, group names are part of a network’s name space, so they must be
properly constrained. Within a Bridging object, group names and member
names cannot overlap (lines 47-49). A declaration of a group’s name, senders,
and receivers must appear in every network hosting a member of a group (lines
43-46). The constraints do not say, however, that group names must be globally
unique. Rather, there are nonlocal group names, which must be unique across
the set of networks and may have members in multiple networks, and local group
names, which need not be unique across the set of networks, but whose members
must be completely confined to one network (lines 29-42). Consequently, the IP
broadcast group name 255.255.255.255 can be a local group of every network in
the flat Internet.

To deal with private IP names, we must assume that every member of every
network in the flat Internet has a globally unique name. If the network—in
practice—uses private IP names for some members, then the unique names of
these members must be fictitious, in the sense that they exist in the model but
not in real life. In the network, the private IP names of these members are
anycast names also assigned to them (along with their fictitious unique names).
Each anycast group has one receiver (the member with that anycast name),
and has every other member of the network as a potential sender. The anycast
groups are local, so the same anycast names can be reused in other networks.
For completeness, there should be a constraint that fictitious names do not
appear in IP headers, so that members with private anycast names are always
referred to in IP headers by their anycast names.

When IP networks are modeled in this way, it is possible (theoretically,
because of scale) to have a complete reachable relation for the flat Internet.
Note that a reachable relation contains unique member names only, so there is
no semantic ambiguity. In edge networks with private anycast names, anycast
service is typically implemented by forwarding within the local network.

5.2 Layering
5.2.1 Layering basics

A Layering object (lines 94-203) declares that a set of bridged overlay networks
is layered on a set of bridged underlay networks. The implementations field
of the Layering object maps implemented overlay links to the session identifiers
of the underlay sessions implementing them. The attachments field of the
Layering object maps overlay members to the underlay networks and members
to which they are attached. This is enough information to describe completely®
how layering should work.

Note that the underlays are not described in the Layering object as a Bridg-
ing object, but as a BridgingWithTraffic object. This is because the traffic
model has been recruited to serve a new purpose. Now, in addition to their
original purpose, sendTables and receiveTables store some of the network data
required to make layering work.

5Not counting layering involving group communication, with is explained below.

20

Unlike bridging, layering does not change the semantics of any network. All
it does is remove the necessity of providing physical implementations of network
links, by implementing them in one or more underlay networks. So there is no
new reachability relation for layering, and no equivalence relation associated
with layering.

Note that names in the overlay networks can overlap with names in the
underlay networks it is layered on. In fact, it is common for overlay members
to be attached to underlay members, each of which has the same name as the
member attached to it. In these instances of layering, there is no need for a
directory mapping overlay names to underlay names.

We will show how layering operates with the help of Figure 7, which is
the same as Figure 4, except that the network of Figure 4 is now identified as
network B. Also, the figure contains one table from an overlay network A, and
two tables from an underlay network C. This figure defines packet processing
at a machine with members of networks A, B, and C (and possibly others). It
includes both composition by layering and composition by subduction, although
subduction will not be discussed until §5.3.

For layering, we must consider two aspects of packet-processing behavior.
First, what happens when a packet is transmitted on a virtual link of B? The
transmitTable of B will contain an ExternalSession, which is a record contain-
ing an external underlay network (here C) and the identifier of the implementing
session. The session identifier and packet are passed to the sendTable of network
C for further handling.

When sendTable C gets a packet from the machine’s operating system, it
can be in the form of a packet with no network header, plus a session identifier.
When sendTable C gets a packet from transmitTable B instead, it comes in the
same form. Note that this is exactly the same packet that entered transmitTable
B. It has a network header for network B, but to the tables of network C, this
is just part of the payload.

Second, what happens when a packet is received in a session of B that imple-
ments a virtual link? The receiveTable will contain an ExternalLink, which is
a record containing an external overlay network (here A) and the link identifier
of the incoming virtual link on which it is being acquired. The incoming link
identifier and packet are passed to the acquireTable of A for further handling.

When acquireTable A gets a packet from a physical link, it is in the form
of a packet with a header for network A, along with a link identifier of the
incoming link. When acquireTable A gets a packet from receiveTable B instead,
it comes in the same form. Note that this is almost the same packet that entered
receiveTable B. Processing in the receiveTable B component has removed its
outer header for network B. The formal model guarantees that inside its payload,
there is a header for network A.

To round out this explanation, Figure 8 shows the Layering fields and table
entries related to the implementation of a link. This link just happens to be
a bridging link implemented by a session spanning bridged underlay networks,
which allows the maximum number of networks to be involved.

21

packet
R frc?m (inLink, netHdr A) .
incoming————— 3| acquire
link Table A

N
packet (inLink,
netHdr A/B)
acquireCmd = packet
SharedAcquire (sessionldent)
f packet or
oM " (inLink, netHdr B) acquire) send | packet(netHdrB)
incoming—— | Table B acquireCmd = Table B
link able Forward packet from OS
packet (inLink = Self,
acquireCmd = no (inLink, netHdr B)
Recei table netHdr B)
eceive entry
packet
(netHdr B) v forward
Table B
packeN(linkldent, netHdr A) drop able
table entry table entry = outLink
(network = A, packet
linkldent) no table (outLink,
entry or netHdr B)
{005 receive drop table entry = packet
no table Table B Drop transmit (netHdr B) o
entry or outgoing
table entry = Table B table entry = link
Primitive Primitive
packet table entry = table entry =
(netHdrB) SharedForward (network=C,
sessionldent)
packet packet packet
(inLink = (sessionldent) (sessionldent)
SharedPacket, or
netHdr B/C) send packet(netHdr C)
Table C from OS
forward
Table C

Figure 7: Operation of a networked machine with members of three networks com-
posed by layering and/or subduction.

5.2.2 Guiding principle: Links = sessions

The third, and most important, guiding principle of the model is summarized
informally as “links = sessions.” It means that the capabilities and generality of
links should be exactly the same as those of sessions. Because layering requires
a correspondence between links and sessions, without this principle, layering
might be constrained unnecessarily. In other words, this is the principle that
allows networks to be composed like Lego blocks.

Although this guiding principle is fully satisfied by the model, you probably
have not noticed it. There are two reasons for this. One is that the formalization
of sessions is lightweight, consisting only of their unique session identifiers. The
other is that every detail of the formal model has been designed, from the
beginning, with this principle as a goal.

Perhaps the best example of this principle combines it with the first principle,
resulting in the idea that group links should have the same generality as group

22

k
O 0
j

N1 ExternalSession N2
=(N3,s)
N3 N4
e] _
@ Externallink
=(N2,j)

attachments = { (A, N3, B), implementations = { (k, s) }
(X, N4,Y)

Figure 8: Implementation of a bridging link. The implementing session can also be
contained within a single network.

sessions. In particular, it should be possible, with layering, to implement group
links with group sessions. This is possible, as evidenced by LayeringTest14
(lines 887-899) and LayeringTest15 (lines 901-912).

5.2.3 Satisfaction property and validation of layering

There is really only one interesting property related to layering. Underlay-
satisfies_layering demands (lines 213-225) says that reachability in the un-
derlay networks is sufficient to support all the sessions implementing overlay
links. Without this property, constructing the right table entries at session
endpoints does not do much good.

Layering is validated with many tests (lines 697-912). Every test includes
the property Underlay_satisfies_layering_demands, because without it, the lay-
ering is useless. The tests are highly varied, making use of properties from all
the other Alloy files. They test implementation of bridging links, and also im-
plementation of links with sessions over bridging links. They test layering in
a three-level hierarchy. They test that self-links can be implemented by self-
sessions. They test implementation of group links. They also test many different
ways in which different layering operators can operate on the same networks,
despite the uniqueness constraints.

5.2.4 Constraints on layering

The purpose of a Layering object is to store the state necessary to implement
some collection of links by means of layering. To enable this state to be modular,
the formal model is designed to allow multiple Layering objects to apply to the
same networks. This way, each purpose for layering can be formalized separately,
and the effect of these Layering objects is cumulative.

23

Recall from §5.1.3 that, in a Bridging object, group names can be used
locally or nonlocally. In a Layering object, only links of nonlocal groups can
be implemented (lines 143-148). This leads to a good example of the need for
multiple Layering objects: what if, in the flat Internet, multiple edge networks
have groups with the same names (broadcast or private IP names), and it is
necessary to implement group links in these networks? The answer is multiple
Layering objects—in each object, the group links of only one edge network are
implemented, so in that object the groups are local.

The price we pay for this convenience is the risk that some Layering objects
might conflict with each other in some way. Consequently, there are global
constraints on Layering objects (lines 227-263) to ensure that they can co-exist
safely.

First, Layering is hierarchical (lines 227-232) says that the dependency
of overlay networks on their underlay networks must be a hierarchy, i.e., can be
pictured as a directed acyclic graph. A network cannot depend on itself!

Second, there must be a one-to-one relationship between implemented link
and implementing session. So Implementation_is_unique (lines 234-239) says
that only one Layering object can implement a particular link. Its companion
constraint, Implementation_user_is_unique, says that a session can implement
only one overlay link.

The trickiest constraints concern attachments, because it is possible for
a network to have multiple members on the same machine. Consider what
would happen if an underlay member could be the attachment of more than
one member of the same overlay network. If the member were playing the
role of underlay session receiver, as Y is in Figure 8, it would not know which
member of N2 to deliver a session packet to. From examples, this kind of at-
tachment does not seem to be necessary, so it is prohibited by the constraint
Underlay member_attaches_unique_overlay member (lines 247-254).

Also consider what would happen if an overlay member could be attached
to more than one member of the same underlay network. If the member were
playing the role of overlay link sender, as as A is in Figure 8, it would not
know which member of N3 to pass sent packets to. This kind of attachment
does not seem to be necessary, either, so it is prohibited by the constraint
Overlay member_attaches_to_unique_underlay member (lines 256-263).

In all cases, members can be attached to different members of different net-
works, or be the attachment of different members of different networks.

Although the formal model is designed for generality, it is possible to take its
generality too far. For example, because the location of members on machines
is not made explicit in this formal model, it is possible for two members of the
same network on the same machine to have a network link between them, and
even for that link to be virtual, thus implemented by other networks! Why is
this inadvisable? It would be taking a building block (communication between
modules on the same machine) and something built on top of it (networked
communication) and then re-building the building block on top of both.

24

5.3 Subduction

Before reading this section, it might be a good idea to refresh your memory by
reading about subduction in Chapter 4.

5.3.1 Shared members and links

In the first version of compositional network architecture [5], it seemed that
it would sometimes be necessary to layer networks on themselves. This was
bad news for rigorous reasoning, because so many properties rely on induc-
tive reasoning about hierarchical relations (relations pictured as directed acyclic
graphs). Fortunately, it is now clear that the right way to model these perplex-
ing situations is with subduction. Subduction is an extension of layering, and
preserves its hierarchical properties.

Recall that when one network is layered on another, their namespaces often
overlap—more specifically, an overlay member often has the same name as the
underlay member it is attached to. Recall also that networks bridged together
must have disjoint name spaces.

In a Layering object that is extended to be a Subduction object, there are
sharedLinks and sharedMembers, each of which is part of an overlay network
and an underlay network. In a pair of shared members, the overlay member
must be attached to the underlay member, and both must have the same name.

Subduction is also like bridging in the sense that the overlay networks and the
underlay networks can both be bridged sets of networks. However, subduction
adds something new, which we know because the overlay networks and underlay
networks cannot be bridged with each other—precisely because they do not
have disjoint name spaces! Subduction makes it possible to get the semantics
of bridging a network together with a network layered on it.

When visualized (see examples in Chapters 1 and 4), a shared link always
looks like two separate links sharing a common endpoint. One of these links is a
peer-to-peer link within the underlay networks, while the other link is a bridging
link between an overlay network and an underlay network. At the common
endpoint, the underlay network member sees a single link that is normal in
every way; if the link is two-way, it can both send and receive packets on the
link. On the other end of the shared link, it has endpoints in two different
network members on the same machine. The semantics of subduction allows
these two members, which are shared members, to coordinate their use of the
shared link. These shared members must have the same names because, from
the perspective of the shared link, there is only one endpoint. For simplicity of
implementation, a shared link has the same link identifier at both of its shared
members.

There is one major violation of the principle that group communication =
point-to-point communication: a shared link cannot be a group link. Given that
a shared “point-to-point” link already has more than two endpoints in reality,
this constraint should come as no surprise.

All the new fields in a Subduction object are derived (lines 296-299). There

25

are many constraints on shared links and shared members (lines 301-340). There
are also constraints on the layering itself (lines 341-347). Lines 348-375 constrain
the acquire and forward tables of shared members so that they produce legal
packet processing.

5.3.2 Packet processing

Packet processing for subduction is also shown in Figure 7, although it was not
pointed out before.

When a packet arrives at a physical inLink of network B (playing the role of
an underlay member), if the link is shared, the table entry in B’s acquireTable
may have the command SharedAcquire. This means that the packet should be
processed as if it arrived at the overlay endpoint of the shared link. It is passed
to the acquireTable of network A (playing the role of overlay member), where
it is processed normally.

The red notation on this arrow in the figure says “netHdr A/B,” meaning
that it has a network header suitable for both A and B. Just as bridged networks
are required to have the same header design, so are networks composed by
subduction.

This explains how a subduction packet ascends from the level of the under-
lays to the level of the overlays in a session view. How does it descend again?
Figure 7 illustrates this with network B playing the role of overlay and network
C playing the role of underlay.

If a packet arrives at the forwardTable of a shared member in B, it can
simply be forwarded onto any outgoing link, shared or otherwise. However, B
can also delegate its forwarding to C. To do this, it must have the command
SharedForward in place of an outgoing link in its forwardTable. In this case,
the packet is given the inLink annotation SharedPacket, and passed to the
forwardTable of the shared member in C. As in the ascending case, it has a
header suitable for both networks.

In the forwardTable of C, the packet must match an entry with its header
and SharedPacket in the place of an inLink identifier. Because this entry is
coordinating with B, it cannot forward the packet onto any outgoing link. It
must forward the packet onto a shared outgoing link, because this is something
B could have done.

Because subduction is an extension of layering, all the uniqueness properties
of layering apply. There is also one new global constraint on subduction, which
is that a shared member cannot be shared among three or more networks (lines
430-435). This is prohibited because it would make subduction semantics de-
pendent on more than two levels, which seems difficult to define and probably
ill-advised.

5.3.3 Properties and validation

Figure 9 is a straightforward extension of Figure 6. As with bridging, there is
an “effective” version of subduction that makes use of the traffic model of the

26

overlays.

reachableWithSubduction

equal if no
shared links

reachableWithBridging 7~ ordared” effectivelyReachableWithSubduction

equal if no

bridging links
equal if no
shared links

reachable ~ - - “ordered ~ effectivelyReachableWithBridging

equal if no
bridging links

effectivelyReachable

Figure 9: The full graph of reachability relations, partially ordered by inclusion.

For a fair comparison, reachabilityWithSubduction is compared to the
union of reachableWithBridging in its overlay and underlay components. In the
absence of shared links, subduction adds nothing to reachability. As before, all
the properties in the figure are validated with tests or verified with theorems
(lines 1018-1146).

6 Summaries

6.1 Simplifying assumptions
6.1.1 Unique member names

In compositional network architecture, there are no absolute rules about mem-
ber names. However, by convention in the formal model, every member of a
network has a unique name in that network, and unique names are conflated
with members (§2.2.2). Group names are distinguished from unique names, and
are unconstrained.

As explained in §5.1.1, for networks to be composed by bridging, the unique-
ness of each member name must extend across the bridged set. As explained in
§5.3.1, for networks to be composed by subduction, each pair of shared members
must have the same unique name.

We have shown, in §5.1.3, that these restrictions are no impediment to mod-
eling the flat Internet with its use of private IP names. The same modeling

27

techniques can be used to cover NDN networks, in which members have many
anycast names but no unique names of their own. NDN members can be given
fictitious unique names, which never appear in packet headers.

6.1.2 No network footers

Network headers on packets are modeled, but network footers are not (§2.4).

6.1.3 Only states are modeled

The model can be used to describe only the static state of a network or set of
composed networks. Although reachable relations represent how static networks
would behave over time, they do not represent behavior of networks in which
there is any intermediate state change (§2.6.1).

6.1.4 No failures

Component failures are not modeled. If a component has failed, it simply does
not exist in the modeled network state (§2.6.1).

6.2 Guiding principles of the formal model
6.2.1 Group communication = point-to-point communication

This principle (introduced in §4.1) says that the capabilities and generality of
group communication channels should be the same as those of point-to-point
communication channels, or as close as possible. The purpose of this principle
is to guard against unnecessary exceptions and special cases. It also has the
advantage of simplifying the formal model overall.

6.2.2 Reachability is a structured partial order

This principle is explained in §5.1.2. The fruits of the principle are shown in
Figure 9. The principle, when applied to the domain of network architecture,
tells us which properties should hold for which pairs of relations. The uniform
patterns observable in the figure protect us from accidental omissions, and also
reveal the real semantic distinctions among the relations.

6.2.3 Links = sessions

The capabilities and generality of links should be exactly the same as those
of sessions, to facilitate layering. It is the similarity of links and sessions that
allows networks to be composed like Lego blocks, so its importance cannot be
overstated.

28

7 Limitations and potential extensions

7.1 Arbitrary compositions of networks

Although the model gives the semantics of particular bridging, layering, and
subduction operations, it does not give a semantics for arbitrarily nested com-
position operations. To do this, it would be necessary to define a generic
Composition object that can be specialized as a Bridging, Layering or Sub-
duction object, and can be used—with suitable constraints—as a field in any
Composition object.

This seems feasible, and it might be worthwhile, especially if it yields new
insights. The reason it has not been done so far can be found in the many verifi-
cation examples in Chapter 6. In these examples, the emphasis is modularity—
on getting meaningful results by verification over the smallest possible scope,
which is usually one individual network. In other words, a global reachability
relation might be obtainable, but it seems unlikely that anything useful could
be said about it, apart from the behavior of individual networks or clusters of
networks within it.

7.2 Composition operators on sessions

In addition to the three composition operators on networks, compositional net-
work architecture features two other composition operators that work on a
smaller scale: protocol embedding and compound sessions. The formal model
should definitely be extended to include these operators, which will require ad-
ditional detail about sessions, session protocols, and session properties.

7.3 Path properties

There are many interesting properties of the paths that packets take through
networks. Do all packets of a flow take the same path? Do all packets of a flow
pass through specific middleboxes? If so, in which order? Here a “flow” can be
any specified aggregate of packets.

Currently, the model provides no convenient way to represent path prop-
erties. Presumably all or most of the information is already available in the
network tables, but the model seems to need convenient derived objects for
formalizing the properties themselves.

7.4 Modeling of state transitions

The current formal model represents static network states only. However, the
capabilities of Alloy 6 make it easy to convert it into a temporal model with mu-
table states and state transitions. This will be convenient for exploring aspects
of networking requiring more detail of this kind.

We have already done this once to study session-location mobility (see Chap-
ter 5), which is one of the two patterns for providing mobility service in networks.

29

In [4] we modeled the state transitions involved when endpoints of a point-to-
point session move during the session, and verified that session connectivity is
maintained even if both endpoints move simultanteously.

7.5 Alloy scopes and verification

As all Alloy users understand, when “verification” is mentioned in this docu-
ment, it does not mean true verification, but only verification within a bounded
universe (scope) of atomic objects.

For many application domains bounded verification seems completely ade-
quate, but it is less so for networks. Because of the numbers of members, links,
and other important objects in network models, some of our network analy-
ses (including more advanced work not reported here) are limited to scopes of
disappointing size. This is a situation we are keen to improve, making use of
whatever opportunities appear in the future.

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communications Review, 44(3), July 2014.

[2] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006, 2012.

[3] J. Sonchack, D. Loehr, J. Rexford, and D. Walker. Lucid: A language for
control in the data plane. In Proceedings of SIGCOMM. ACM, 2021.

[4] P. Zave and J. Rexford. Compositional network mobility. In E. Cohen
and A. Rybalchenko, editors, Proceedings of the 5th Working Conference on
Verified Software: Theories, Tools, and Experiments, pages 68-87. Springer
LNCS 8164, 2014.

[5] P. Zave and J. Rexford. The compositional architecture of the Internet.
Commaunications of the ACM, 62(3):78-87, March 2019.

30

