
Patterns and Interactions in Network Security

PAMELA ZAVE AND JENNIFER REXFORD

ACM Reference Format:
Pamela Zave and Jennifer Rexford. 2020. Patterns and Interactions in Network Security. 1, 1 (June 2020), 35 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Today’s Internet is not worthy of the trust society increasingly places in it. We hear every day about new security
vulnerabilities and successful attacks, ranging from email viruses and Web sites overrun with unwanted traffic, to
network outages, compromised user data, and downright espionage. These attacks are costly, leading to denial of service,
loss of revenue, identity theft, ransom demands, subversion of the democratic process, malfunctioning safety-critical
equipment, and more.

Many successful security attacks use “social engineering” to prey on naive users, for example by getting them to
click on malicious hyperlinks. Users are often guilty of using easily-guessed passwords, or failing to reset a default
password on a new device. Application software is also the source of many security vulnerabilities, due to bugs or poor
programming practices. Its complexity provides a big “attack surface” for adversaries to probe for weaknesses.

Despite the prevalence of social engineering and vulnerable applications, networks are an important part of the
security landscape. Networks make attacks on applications possible by delivering unwanted traffic or leaking sensitive
data. Network components and network services are often the targets of attacks. Sometimes a network itself is the
adversary, performing unethical surveillance or censoring communication.

Fortunately, networks can also be part of the solution, by blocking unwanted traffic, enabling anonymous communi-
cation, circumventing censorship, or protecting both infrastructure and applications from a range of known attacks.
And network protocols can protect users by authenticating and encrypting communications.

This article is intended as a concise tutorial on the very large subject of security by and for networks, specifically the
mechanisms through which network security is achieved. It is intended to be useful to all readers interested in networks,
whether their specialty is security or not. Because the basic mechanisms have proven to be fairly stable over time, we
do not emphasize which particular attacks and defenses are trending at the moment. The details of well-motivated
attacks or cost-effective defenses change as technology changes, and particular defenses might cycle in and out of
fashion. Instead, to achieve the goal of the paper, we derive our focus and organization from two perspectives.

The first perspective is that, although mechanisms for network security are extremely diverse, they are all instances
of just a few patterns. By emphasizing the patterns, we are able to cover more ground. We also aim to help the reader
understand the big issues and retain the most important facts. The second perspective comes from the observation

Author’s address: Pamela Zave and Jennifer Rexford.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Pamela Zave and Jennifer Rexford

that security mechanisms interact in important ways, with each other and with other aspects of networking. These
interactions deserve our attention. To provide communication services that are secure and also fully supportive of
distributed applications, network designers must understand the consequences of their decisions on all aspects of
network architecture and services.

The boundaries of network security have been drawn by convention over time, so we begin the tutorial by defining
network security in two ways. First, there is a practical classification of network security attacks, based primarily on
which agents are the attackers, defenders, and potential victims. The classification is based secondarily on defense
mechanisms. Second, we discuss how network security is related to information security and other forms of cyber-
security, as well as the gaps where no comprehensive defenses yet exist.

The four main sections of the tutorial cover the four major patterns for providing network security. All agents
can protect their own communications with cryptographic protocols (§4), which (among other benefits) hide the data
contents of packets. Networks can protect themselves and their users by traffic filtering (§5). Both users and networks
can employ dynamic resource allocation to overcome attacks (§6). Although cryptographic protocols hide the data
contents of packets, they cannot hide packet headers, because the network needs them to deliver the packets. So
when users need to hide packet headers from adversaries, which may include their own network, they must resort
to compound sessions and overlays (§7). The first three patterns will be familiar to anyone who has even dabbled in
network security, while the importance of the fourth pattern has not been sufficiently recognized.

Between the definition of network security and the four major sections, §3 presents a new descriptive model of
networks and network services. This model explains how network services are provided by means of composition of
many networks at many levels of abstraction, where each network is self-contained in the sense of having—at least
potentially—all the basic mechanisms of networking (such as routing, forwarding, session protocols, and directories).
This model allows complete and precise descriptions of today’s network architectures. It is also necessary for recognition
of the four patterns, because the same patterns are reused in different networks in a compositional architecture. The
patterns are reusable precisely because the different networks have fundamental similarities, despite the fact that they
may have different purposes, levels of abstraction, membership scope, or geographical span.

In each of the four main sections, in addition to presenting a security mechanism, we consider how the mechanism
interacts with other mechanisms within its network and across composed networks. This helps to determine where
security could and should be placed in a compositional network architecture.

A version of this tutorial with more details, examples, commentary, and references can be found on arXiv [41].

2 WHAT IS NETWORK SECURITY?

Network security is a pragmatic subject with boundaries that have been drawn by convention over time. Although the
focus of this tutorial is defense mechanisms, we must have some idea of what kind of attacks they can defend against.

Classifying security attacks is extremely difficult because—by their very nature—security attacks are clever, they
exploit gaps in standard models, and they are always evolving. In §2.1 we present a practical classification scheme based
on multiple factors. It only covers known attacks, and there are some overlaps in the categories, but it does provide
intuition that will be helpful for understanding the defenses.

Of all the factors relevant to security attacks, the worst factor for purposes of classification is real-world consequences
(or, alternatively, the motivations of attackers). These consequences include financial loss, loss of time, loss of privacy,
loss of reputation, loss of political freedom, loss of physical safety, and so on. Often, these losses are intertwined, because

Manuscript submitted to ACM



Patterns and Interactions in Network Security 3

one loss causes another. Some attacks have no direct real-world consequences: their sole purpose is to enable other,
more damaging, attacks.

Our practical classification scheme, summarized in Figure 1, is based primarily on which agents are the attackers,
defenders, and potential victims. With one exception (see table), agents can be either the network, meaning the
infrastructure machines provided by the network operator to run the network, safe users, meaning machines that use a
network for communication and whose behavior is satisfactory according to whatever rules or authorities apply, or
unsafe users, meaning machines that have access to a network and whose behavior is unsatisfactory because they have
been programmed maliciously, ignorantly, or erroneously. Classification is based secondarily on defense mechanisms;
these must be secondary to defenders because some mechanisms are only available to some defenders.

ATTACKERS POTENTIAL
VICTIMS

FLOODING
ATTACKS

unsafe users

unsafe users

network and/or
unsafe users

network defends with
tra�c �ltering and/or
dynamic resource
allocation

network defends
with tra�c �ltering and/or
cryptographic protocols

safe users defend
with cryptographic protocols
and/or compound sessions
and overlays

network and/or
safe users

network and/or
safe users

safe users

SUBVERSION
ATTACKS

POLICY
VIOLATIONS

SPYING AND
TAMPERING

unsafe users network defends
with tra�c �ltering

authority responsible
for the policy

DEFENDERS AND
DEFENSE MECHANISMS

safe users defend
with dynamic resource
allocation

safe users defend
with cryptographic
protocols

Fig. 1. A practical classification of network security attacks.

Note that the network is usually a defender, but can be an attacker. Even though traffic filtering is a possible defense
for three attack categories, as we will explain below, the details of filtering against different attacks are quite different.

In §2.2 we will discuss alternative definitions of security. These include other kinds of cyber-security that complement
network security, attacks for which comprehensive defenses do not yet exist, and alternative classification schemes.

2.1 A practical classification of network security attacks

2.1.1 Flooding attacks. In a flooding attack, attackers send floods of packets toward the victim, seeking to make it
unavailable by exhausting its resources. Consequently, flooding attacks are one type of denial-of-service attack (see
§2.2.1). The intended victims of flooding attacks vary. If the victim is a public server or user machine, the attack might
seek to exhaust its compute-cycle, memory, or bandwidth resources. Note that some public servers such as DNS servers
are part of the infrastructure of a network, so a flooding attack on a DNS server is an attempt to deny some network
services to a large number of users. An attacker might also target some portion of a network, seeking to exhaust the
bandwidth of its links. A bandwidth attack can make particular users unreachable, and can also deny network service
to many other users whose packets pass through the congested portion of the network. A bandwidth attack can also
shift traffic to a less-secure part of a network, enabling other security attacks.

Manuscript submitted to ACM



4 Pamela Zave and Jennifer Rexford

If an attacker simply sends as many packets as it can toward a victim, the resources expended by the attacker may
be similar to the resources expended by the victim! A distributed denial-of-service attack can be launched from many
coordinated machines, focusing the resources of many machines onto a smaller number of targets. Alternatively, a
flooding attack can employ some form of amplification, in which the attacker’s resources are amplified to cause the
victim to expend far more resources. Here are some well-known forms of amplification:

• A “botnet” is formed by penetrating large numbers (as in millions) of innocent-but-buggy machines connected
to the Internet, and installing in them a particular kind of malware. Subsequently the attacker sends a triggering
packet to each member of the botnet, causing it to launch a security attack unbeknownst to the machine’s owner.
This is another kind of distributed denial-of-service attack.

• An “asymmetric attack” sends requests to a server that require it to expend significant compute or storage
resources for each request, so that a relatively small amount of traffic is sufficient to launch a significant attack.
A typical IP example is a “SYN flood,” in which the victim receives a flood of TCP SYN (session initiation) packets.
Each packet causes the server to do significant work and allocate significant resources such as buffer space. Also
in IP networks, attackers can flood DNS servers with queries for random domain names (a “random subdomain
attack”). These will force the servers to make many more queries, because they will have no cached results to
match them.

• An attacker can send many request packets to public servers, with the intended victim’s name as source name.
This “reflection attack” causes all the servers to send their responses to the victim. It amplifies work because
responses (received by the victim) are typically much longer than requests (sent by the attacker).

Network infrastructure provides the principal defense against flooding attacks, by filtering out attack packets (§5).
Flooding attacks can also be countered by allocating additional resources to handle peak loads (§6); this is something
that both network infrastructure and targeted users can do.

If network infrastructure discovers where attack traffic is coming from, defending against the attack becomes much
easier. For this reason, attackers employ various techniques to hide themselves, for example:

• In an IP network, a sender can simply put a false source name in the packet header, commonly called “spoofing.”
In email applications, source email addresses are also easily spoofed.

• With a botnet, even if bots use their true source names, there may be too many of them to cut off. The IP address
of the master of the botnet remains hidden.

• An attacker can hide by putting a smaller-than-usual number in IP packets’ time-to-live fields, so that the packets
are dropped after they have done their damage in congesting the network, but before they reach a place where
measurements are collected or defenses are deployed.

Flooding attacks are a very serious problem in today’s Internet. There are businesses that generate them for small
fees. They target popular Web sites and (especially) DNS [9]. The worst attacks are mounted by enterprises, albeit
illegal ones, that can draw on the same kind of professional knowledge, human resources, and computer resources that
legitimate businesses and governments have. Such attackers will use many attacks and combinations of attacks at once,
and can continue them over a long period of time. According to industry reports, we are entering the era of flooding
attacks of terabits per second [1].

2.1.2 Subversion attacks. The purpose of a subversion attack on a network member is to get the victim’s machine to
act as the attacker wants it to, rather than as the owner of the machine wants. Here are some well-known examples:
Manuscript submitted to ACM



Patterns and Interactions in Network Security 5

• The attacker sends malware to infect or penetrate the machine. The malware might be spyware or ransomware,
capable of stealing or damaging data stored in the machine. The malware might turn the machine into a bot, so
the botnet master can exploit the machine’s resources. Or it might attack the physical world through devices
controlled by the machine.

• Port scanning is the process of trying TCP and UDP destination ports on a range of IP addresses, to find pairs
that will accept a session initiation. Port scanning does not in itself do much harm, but it is gathering information
to be used in launching other malware attacks. This is because most malware targets a known vulnerability in a
specific application program. Scanning is less productive in IPv6, because the address space is much larger, but
specially focused scans may still succeed.

• The Border Gateway Protocol (BGP) is a control protocol through which IP networks exchange routing informa-
tion. In “BGP hijacking,” an attacker uses BGP to insert false information, telling routers to send packets with
certain destination names to the attacker rather than the true destination. The attacker may simply drop the
redirected packets, denying service to the victim. The attacker can also respond to the packets as an impersonation
of the intended destination, for the purpose of stealing commerce or secrets.

• Subversion attacks on directories also insert false information. Higher-level names will then be mapped to
the wrong lower-level names, with the same consequences as route hijacking. The directory protocol DNS
(World-Wide Web name to IP address) and the IPv4 directory protocol ARP (IP address to Ethernet address) are
subject to subversion attacks, as is the IPv6 replacement for ARP, called Neighbor Discovery.

• Email spam and voice-over-IP robocalls can be considered subversion attacks. A networked device’s owner wants
the device for communicating with acquaintances and chosen institutions. These attacks force the device to
present ads and other unsolicited junk to the attention of its owner.

If a receiver of information knows the correct source of that information, then both users and network components
can protect themselves from subversion by using cryptographic protocols. With cryptographic authentication, they
know the identity of the agent with which they are communicating.

In other cases, network infrastructure protects itself and its users from subversion attacks by traffic filtering. But
filtering for subversion attacks is significantly different from filtering for flooding attacks because subversion requires
two-way communication between attacker and victim. For example, if the victim is a server that communicates using
TCP, the attacker cannot send data to it until the initial TCP handshake is completed. This means that an attacker
cannot hide by spoofing: if an attacker puts a false source name in its first packet to the victim, it will never receive a
reply to its SYN, and can never complete the handshake.

2.1.3 Policy violations. Obviously, the default behavior of a network is to provide all communication services requested
of it. On the other hand, the administrative authority of the network, or other authorities such as governments,
employers, and parents, may have policies constraining network communication. Specific communications that violate
these policies are security attacks, and the network defends against these attacks by tampering with the communications
(up to and including blocking them) or by spying on them so that other enforcement actions become possible. These
defenses are exceptions to the default behavior of the network. Examples of policy violations include:

• Two users can communicate for the purpose of committing a crime. This should be prevented, or in some cases
recorded for evidence in legal proceedings (“lawful intercept”). Similarly, the communications of suspected
individuals can be monitored for surveillance and investigation.

• Saboteurs can attempt to access the control system of a power grid.
Manuscript submitted to ACM



6 Pamela Zave and Jennifer Rexford

• A minor can attempt to access a Web site that violates parental controls.
• A network may consider certain voice or video applications to take up more bandwidth than individual users are
entitled to, and rate-limit them to minimize their effects on overall performance.

• Operators of enterprise networks know which employees are using which machines for which purposes. Often
they configure their networks to prevent unnecessary communications, which may be attacks, and can be blocked
without harm even if they are only mistakes. For example, machines used by engineers should not have access to
the enterprise’s personnel database.

Network infrastructure defends against policy violations by traffic filtering. As indicated above, violating packets
can simply be discarded, but they can also be recorded, tampered with, or rate-limited.

Traffic filtering for policy enforcement is different from traffic filtering against flooding and subversion attacks
because the filtering is so specific. There is often a specified target whose communications are being monitored. Flooding
and subversion attacks, in contrast, usually have unknown sources, and their victims are often opportunistic.

2.1.4 Spying and tampering. The victims of spying and tampering are network users, who want their communications
to be private, and want the network to be a transparent and effective medium of communication. The attackers in
spying and tampering can be unsafe users, or they can also be the infrastructure machines of the network itself. Note
that tampering is different from subversion because, in subversion, one endpoint of the communication is the attacker.
In a tampering attack, the communication has two innocent endpoints, and the attacker is causing what one endpoint
receives to differ from what the other endpoint sent.

When the attacker is the network, a spying or tampering attack is the exact dual of a policy violation—both the users
and the network are doing exactly the same thing, and the only difference is which party we consider good or bad.
Judgments of which behaviors are good or bad emerge from social debates involving legal, commercial, political, and
ethical considerations. These debates should not be constrained by technology. Rather, the goal of technical experts
should be to have the knowledge to implement whatever decisions emerge from these debates [7].

Examples of spying and tampering include:

• Some governments censor the Internet usage of their citizens. Even if networks in their countries are privately
owned, the governments can insist that network providers enforce their policies.

• Some governments use surveillance of network usage for repression of or retaliation against political dissidents.
• By observing the searches and Web accesses of a network user, an attacker can learn a great deal about the user’s
personal life.

• Networks can insert into the paths of user sessions middleboxes that insert ads or alter search results.

Network users have two possible defenses against spying and tampering. The first is the use of cryptographic
protocols (§4), which conceal the data in transmitted packets. The second is the use of compound sessions and overlays
(§7), which seek to hide packets so that even their headers, sizes, and timing cannot be observed.

2.2 Relation to other definitions of security

2.2.1 The information-security triad. Governments, enterprises, and other institutions have broad concerns about
information security. These concerns are articulated by the well-known “information-security (CIA) triad,” consisting
of the properties of confidentiality (secrecy, privacy, access control), integrity (the information is valid or uncorrupted or
has correct provenance information), and availability (information can be read or written whenever needed).
Manuscript submitted to ACM



Patterns and Interactions in Network Security 7

These broad concerns about privacy include insider attacks and theft of physical storage media. The broad concerns
about integrity and availability include natural disasters and even military attacks that might affect data centers. If the
opposite of availability is denial-of-service, we can see that denial-of-service attack is also an extremely broad category.

Although the goals of the CIA triad have a great deal of overlap with the goals of network security, the classification
scheme of §2.1 is far more focused. It is confined to threats incurred by operating a network or being connected to one,
and it is closely tied to specific defense mechanisms within networks.

2.2.2 Complementary forms of security. For network users, network security is a first line of defense against subversion
attacks; a major goal is to keep subversion packets from being delivered to user machines. If the packets do arrive, then
security measures in operating systems and applications must take over. Many applications and most operating systems
now have well-developed security measures of their own. However, old operating systems, real-time operating systems,
and Internet of Things devices (which are highly resource-constrained) tend to have far fewer security mechanisms
built in. For these endpoints, network defenses against subversion remain important.

Another subfield of security research and practice concerns “trust management,” which is technology aimed at
deciding which agents should have permission to access which resources or perform which operations, based on the
credentials and attributes of the agent, and on the permission policies applicable to the object (see, for example, [13, 23]).
Trust management is a decision-making component of most forms of security, including network security.

Most security experts would probably agree that the human side of security is the most important and the hardest to
deal with. In an ideal world, all institutions would have sophisticated cyber-security policies, and enforce them. These
policies would prevent (among other problems) insider attacks in which employees with access to code deliberately
put bugs or backdoors in it. All people using computers would keep their software updated, choose hard-to-guess
passwords, and change default passwords immediately. (Botnets are heavily populated with Internet of Things devices
such as baby monitors, because they come with factory-installed passwords, and their naive owners do not change
them.) No one would be fooled by “phishing” attacks, which imitate a legitimate email so that the recipient clicks on a
malicious hyperlink embedded in it. And on and on.

2.2.3 Threats with inadequate defenses. Personal data privacy is a form of security that is much discussed in today’s
world. Individuals are concerned about the massive amounts of personal data that is collected about them by Web sites,
search engines, and other applications. This data is extremely valuable for selling advertising, and can also be used for
worse purposes. Individual users can protect their privacy to some extent by using anti-spying defenses to achieve
anonymity. Anonymously, they can email and participate in social media. At some point, however, full participation in
electronic commerce and institutional services almost forces people to disclose their identities [37].

Finally, there is the growing threat of side-channel attacks. Network infrastructure monitors traffic to filter out
flooding attacks, subversion attacks, and policy violations. Attackers also observe and analyze network traffic, for
the purpose of spying and tampering. What are the characteristics of network traffic to be observed and analyzed, in
addition to principal header fields and packet contents (which are explicitly intended and known to carry information)?

The timing and sizes of packets can be observed. Pseudo-random header fields, intendedmerely to group or distinguish
packets, might be carrying secret codes. Optional header fields might reveal the configuration of the machine or software
version that produced it. If the observer has access to the machine that sent the packet, it might be able to observe
processor timing, power consumption, or usage of shared resources as the packet is prepared. Such access is possible if
the machine is a stolen mobile device, or if multiple tenants share a physical machine in a cloud.

Manuscript submitted to ACM



8 Pamela Zave and Jennifer Rexford

All of these characteristics are usually incidental, but they can be controlled by the sender to signal information to a
knowledgeable observer that is invisible to other observers. This is known as a “covert channel.” Incidental characteristics
can also be analyzed by an adversarial observer, to gain information despite the intentions of the sender. This is known
as “side-channel” information [36]. Extracting side-channel information from packet timing and sizes is becoming
more common, both for (good) filtering and (bad) spying, because the expanding use of cryptography has hidden much
explicit information [28]. At present defenses against side-channel spying are patchy and experimental.

3 A MODEL OF NETWORKING

To find the patterns underlying network security mechanisms, and to understand how these patterns interact with each
other and with other aspects of network architecture, we must be able to describe today’s networks in a way that is
somewhat abstract and yet very precise. The “classic” Internet architecture [6] and the OSI reference model [17] have
not kept up with the Internet’s evolution since the early 1990s. For a better way to describe networks, we will use the
compositional model of networking introduced in [40]. In this section we give a brief overview of the compositional
model, covering the structures and aspects that will be used in the rest of the tutorial. Although the model uses familiar
terms, be aware that when they have definitions within the model, it is these precise and specific definitions that apply.

3.1 Components of a network

The components of a network are members and links. A member of a network is a software and/or hardware module
running on a computing machine, and participating in the network. As a participant, the member implements some
subset of the network’s protocols. A network member usually has a unique name in the namespace of the network. For
example, Figure 2 shows five members of a network with unique names A, B, etc.

send (packet)

deliver (packet)

receive (packet)

A
B

C

D
E

machine

module of
distributed

system

machine

module of
distributed

system

NETWORK

members point-to-point links

Fig. 2. Components of a single network, and its user interface.

In the compositional model a network always has a single administrative authority, or alternatively network operator,
which is a person or organization responsible for the network. The operator provides and administers resources for the
network, in the form of links, members, and additional resources on the members’ machines. The operator is expected
to protect the network’s resources and ensure that users of the network enjoy the promised communication services.
It is convenient to partition the members of a network into infrastructure members administered by the operator to
provide services, and user members belonging to the network for the purpose of employing its services.

A network member can send or receive digital units called packets on one or more links of the network. A link is a
communication channel. In this version of the tutorial we only consider point-to-point links, as broadcast links are not
fundamentally different for security.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 9

A public network allows any machine to host a network member and connect to the network, while a private network
allows only authorized members. The two common authorization mechanisms are cryptographic protocols (§4) and
physical security, in which intruders are denied physical access to the links of the network.

3.2 Functions of a network

As shown in Figure 2, a network enables modules of a distributed system on different machines to communicate. We
say that a network provides one or more communication services. A particular instance or usage of a communication
service is called a session. Like a link, a session is also a communication channel for digital packets. The minimum
semantics of a session is that it is a group of packets that the users of the service regard as belonging together.

There are two major mechanisms for providing network services. The first is routing and forwarding. Forwarding
is the mechanism that extends the reach of the network beyond individual links to paths of links; in forwarding, a
member receives a packet on an incoming link, and sends it out on an outgoing link to get it closer to its destination.
A forwarder is an infrastructure member whose primary purpose is forwarding. Figure 3 shows a path through an IP
network between user members A on Alice’s machine and B on Bob’s machine. In the figure, R1 and R2 are “IP routers,”
i.e., forwarders. All these names are “IP addresses.”

local-
area

networks path of
links and members

session session session

link linklink

IP
network

a b

TCP session

Alice’s
machine

Bob’s
machine

A R1

r1 r1 r2 r2

R2 B

infrastructure
machine

infrastructure
machine

Fig. 3. The IP networks of the Internet are layered on many local-area networks.

Routing is the control mechanism that controls forwarding by populating forwarding tables in forwarders. Forwarders
consult their tables to know where to forward packets. Routing and forwarding can be extended beyond minimum
requirements of reachability to perform services such as broadcasting and steering packets through middleboxes—
members that perform various packet-processing functions related to security, efficiency, or interoperability.

The other major mechanism for satisfying service specifications is session protocols. A session protocol is a set of
rules governing packet formats, higher-level semantic units, and participant behavior during a session. In Figure 3,
the session shown in the IP network uses the TCP session protocol. Following the rules of TCP, the session endpoints
maintain state and send extra packets to provide reliable, ordered data delivery despite the facts that IP links are not
perfectly reliable, and different packets of a session may be routed on different paths. UDP (another IP session protocol)
is much simpler and implements fewer services, but it does define port numbers that can be used to group related
packets.

Manuscript submitted to ACM



10 Pamela Zave and Jennifer Rexford

3.3 Composition of networks

We have defined networks as self-contained modules with members, links, routing, forwarding, and session protocols.
In today’s Internet, there are many networks, each of which may be specialized according to its purpose, membership
scope, geographical span, and level of abstraction. A network architecture is a flexible composition of these networks,
and thus called a “compositional network architecture” [40].

There are two composition operators on networks, the first being layering. The model defines layering precisely: one
network is layered on another network if a link in the overlay network is implemented by a session in the underlay
network. For example, each IP link in Figure 3 is implemented by a session in a local-area network (see bold arrows).
Members of different networks on the same machine communicate through the operating system and/or hardware
of the machine. IP packets sent on an IP link are actually encapsulated in Ethernet headers and transported through
local-area networks as the data parts of Ethernet packets. Since the implementation of an overlay link always consists
of digital logic, whether in hardware or software, an overlay link is always virtual, regardless of whether the links in the
underlay are physical or virtual. The IP network in Figure 3 plays the same role as the distributed system in Figure 2.

As Figure 3 shows, almost all networked machines host members of at least two networks, and some host many
more. We use the term member rather than node because the latter is too similar in connotation to machine. The figure
shows how layering extends the reach of the local-area networks, each of which is isolated. A local-area network only
implements an IP link, but the IP network can reach machines over paths that are concatenations of links.

The second composition operator on networks is bridging. Bridging simply means that two particular networks share
some links, so they can forward packets to each other. If the designs of bridged networks are sufficiently homogeneous,
in particular if they share session protocols, then sessions can cross network boundaries. In the Internet, many IP
networks are bridged together in this way. These networks differ in their operators/administrative authorities, but not
their basic design.

The definition of layering in compositional network architecture is very different from the older notion of layering
in networks found in the “classic” Internet architecture [6] and OSI reference model [17]. In the new model, each layer
is a complete network, so IP routing/forwarding and IP session protocols belong to the same network/layer. In the new
model, an architecture has as many layers as needed, which often includes multiple IP networks layered on top of one
another. We use the compositional model in this tutorial because it allows comprehensive yet precise descriptions of
how the Internet actually works today [40]. It is also necessary for recognition of the four patterns, because the same
patterns are reused in different networks in a compositional architecture.

4 CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are incorporated into the session protocols of a network. Cryptographic protocols are executed
by the endpoints of a point-to-point session, so that the session will have (data) integrity and (data) confidentiality.
These are the same terms used in the information-security triad, but in this context they have a much more specific
meaning. Confidentiality means that no party except a designated receiver can read the packets sent. Integrity means
that no third party can insert, modify, or replay packets of the session, so that the packets received by a designated
receiver are the exact packets sent by the designated sender, and if the sender sends a distinguished packetm times, the
receiver receives it at mostm times.

Cryptographic protocols can also achieve endpoint authentication, which means that either session endpoint can be
sure of the other endpoint’s identity. Confidentiality should be reinforced by the property of forward secrecy, which
Manuscript submitted to ACM



Patterns and Interactions in Network Security 11

means that even if an encrypted session is recorded by an attacker, and the attacker learns the secrets of one of its
endpoints at some later time, the attacker still cannot decrypt and read the recorded packets.

User members of a network use cryptographic protocols to protect themselves against spying and tampering attacks.
Infrastructure members, also, defend network operations against spying and tampering with cryptographic protocols.

It is important that cryptographic protocols are designed for the most hostile environments. For example, in accepted
proof systems (such as [5, 26]), the baseline model of a security protocol allows an adversary to control all communication
channels between the endpoints (and other agents they might query), examining, storing, deleting, injecting, or altering
any packets that the adversary wishes. Because cryptographic protocols are designed (and proved mathematically) with
such conservative assumptions, users trust them even when they can trust nothing about the layers of networking
between endpoints.

§4.1 begins our discussion of cryptographic protocols by introducing the central concept of identity. The foundation
for all cryptographic protocols is public-key cryptography (§4.2), because it provides some crucial functions and supports
others. In §4.3 we return to the properties of data integrity and confidentiality. Finally, in §4.4 we discuss architectural
interactions with cryptographic protocols that are relatively independent of other security patterns.

In §4.1 through §4.3 the context will be a single network of any kind. The discussion also covers a set of similar
bridged networks all at the same level of the layering hierarchy, for example the bridged IP networks of the Internet. §4.4
broadens the context, as it includes how cryptographic protocols interact with composition of networks by layering.

4.1 Trust and identity

Security requirements are based on which network members do and do not “trust” each other. Of course a network
member is a software or hardware module; it cannot trust in any ordinary sense of the word, and has no legal
responsibility that it can be trusted to fulfill. For the purpose of establishing trust, a network member that is an endpoint
of a session has an identity. This identity is the answer to the question, “With whom am I communicating?”

This role implies that an identity should have meaning in the world outside the network. Often it is closely associated
with a legal person—a person or organization—who is legally responsible for the network member. The identity is
usually the source of the data that the network member sends during the session.

Identities are related to layering, because layering allows a machine to have different names—one in the namespace
of each network it participates in—at the same time. For example, in Figure 4, each machine is participating in a
higher-level Web-based application network and a lower-level IP network bridged with other IP networks. The dynamic
sessions and links in the figure are formed as follows. The client’s browser at the upper level instructs its IP member C
to contact bigbank.com. When there is layering of networks, a directory is often used to find where an overlay member
is attached to an underlay network. C looks up bigbank.com in the DNS directory, and finds it is located on the same
machine as IP member S . At the lower level, C initiates a TCP session to S . When the TCP session (and dynamic link)
are ready, the browser initiates a request/response HTTP session over it.

If the two endpoints of the TCP session need to authenticate each other (as they should, for a banking transaction),
what identities do they give as their own? The general answer is that each gives its member name or the name of a
higher-level network member that is using it. Either IP interface could give its IP name, but it would not be a very good
identifier—too transient, or with too little meaning in the outside world. Instead, the server’s IP interface S will be
known by its public Web name bigbank.com. The client’s machine does not have a name in the application network,
because the browser only initiates sessions and never accepts them. However, the user of the browser is a person named

Manuscript submitted to ACM



12 Pamela Zave and Jennifer Rexford

[browser] bigbank.
com

Jane Q. Public

Web-based
application

 network

C S

client’s IP
network

transit IP
 networks

server’s IP
 network

TCP session

dynamic link

HTTP session

client’s
machine

server’s
machine

implementation

Fig. 4. Member names and identities in a Web application.

Jane Q. Public, whose clicks and keystrokes provide input to the browser. The browser will send Jane Q. Public as its
identity, and we can imagine this identity as a member of an even-higher-level distributed financial system.

For endpoint authentication, a member must have access to a secret associated with the identity it provides. One
kind of secret, useful when the two endpoints have an ongoing relationship, is a password. The server bigbank.com
knows Jane’s password, and she can type it into the browser when requested.

For the important cryptographic protocols, however, the secret is always a public/private cryptographic key pair (see
next section). The relationships among the important entities are shown in Figure 5. The identity is responsible for the
packets sent by the network member, and the network member has access to the public key and its paired private key.

has access to
(checked by endpoint

authentication)

is the
user of this

session
endpoint

owns
(certi�ed by

certi�cate authority)

public/private
key pairidentity

network member,
session endpoint

Fig. 5. Relationships among identification entities.

A “certificate authority” is trusted to ascertain that a particular public key belongs to a particular identity; it issues a
certificate to that effect and signs it digitally. Thus when an endpoint receives a certificate, it can trust the identity
that goes with the key (at least, as well as it trusts the certificate authority). As indicated above, identities found in
certificates include names of legal persons, domain names, and IP addresses.

4.2 Public-key cryptography and its uses

In public-key cryptography, an identity generates and owns a coordinated pair of keys, one public and one kept private
and secret. The important properties of these keys are that (i) it is extremely difficult to compute the private key from
the public key, and (ii) plaintext encrypted with the public key can be decrypted with the private key, and vice-versa.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 13

Today’s public-key cryptography is descended from the Diffie-Hellman Key Exchange protocol and the RSA algorithm
(named for its inventors Ron Rivest, Adi Shamir, and Leonard Adleman). At present a key must be at least 2048 bits to
be considered secure, and the minimum size is expected to increase in the future.

4.2.1 Endpoint authentication. A simple challenge protocol is sufficient to determine that an endpoint has access to a
public/private key pair. Suppose that an endpoint B is engaged in a session with endpoint A, and wants to check its
identity’s claim to own public key K+. B can make sure of this by sending a nonce (a random number used only once in
its context) n. A is supposed to reply with K−(n), which is n encrypted using the private key K− that goes with public
key K+. B then decrypts the reply with K+. If the result is n, then B has authenticated that the other endpoint indeed
has access to public key K+ and its private key K−.

In practice B may not know the public key ahead of time. In a typical client/server protocol, the client needs to
authenticate the server, but the server does not authenticate the client. The client B might send its nonce to A, and A
might reply with both its certificate and K−(n). From the certificate, B gets K+. The client should validate the certificate
as well as the encrypted nonce, including checking that the identity in the certificate is the identity expected, checking
that the certificate has not expired, and checking that it has been signed by a legitimate certificate authority. Some client
software validates certificates poorly or not al all, causing it to be dubbed “the most dangerous code in the world” [11].

A server can delegate its identity to another trusted network member, by giving the delegate its certificate and keys.
For example, “content-delivery networks” host Web content on behalf of other enterprises. Content-delivery servers
are trusted delegates of their customers, and each such server can have many delegated identities.

4.2.2 Digital signatures. A digital signature transmitted with a document can be checked to verify that the document
came from a specific identity, and has not been modified in transit. The simplest digital signature of a documentm
would be K−(m), i.e., the document itself encrypted with the private key of the signer. The recipient decrypts the
signature with the public key of the signer. If the result ism, then the signature and document are verified.

Because public-key encryption is computationally expensive, encrypting whole documents would be very inefficient.
Instead a cryptographic hash is used. The hash function H is computed from a digital messagem (of any length) to a
fixed-length bit string. Its important property is that, given a hash H (m), it is extremely difficult to compute a different
messagem′ such that H (m) = H (m′). So a (short) cryptographic hash H (m) of the document can be encrypted with the
private key and used as a digital signature. To verify the signature, the recipient both encrypts the signature with the
public key, and computes the same hash function on the plaintext document. Verification is successful if they match.

If a client is interested in the identity of a server only to obtain its authentic data, then receiving data signed by the
server is just as good as receiving data directly from the server.

4.2.3 Key exchange. Because public-key cryptography is computationally expensive, it is used only to encrypt small
amounts of data. For encrypting the entire data stream being transmitted on a link, symmetric-key cryptography, which
is much more efficient, is used. As the name implies, symmetric-key cryptography requires that both endpoints have
the same secret key, which is used to both encrypt and decrypt the data. This raises the problem of “key exchange,” or
how to distribute secret keys securely over insecure channels. The basic solution to the problem is the Diffie-Hellman
algorithm, shown in Figure 6.

Unfortunately, the basic algorithm is vulnerable to a “man-in-the-middle” attack, which refers to any attack carried
out by an adversary able to intercept packets on a link. The adversary can read, absorb, inject, or alter any packet
transmitted on the link; the attacker can also “replay” packets by storing them and retransmitting them later. Figure 7

Manuscript submitted to ACM



14 Pamela Zave and Jennifer Rexford

g, p, Y(A)

ENDPOINT A ENDPOINT B

  

choose g, p,
random secret X(A);

compute Y(A) = g        mod p

compute Y(B)        mod p

X(A)

X(A)
compute Y(A)        mod p

X(B)

X(B)

X(B)

X(A)

choose random secret X(B);
compute Y(B) = g        mod pY(B)

both are g                mod p
which is the shared secret

Fig. 6. Diffie-Hellman key exchange. д is a small number such as 2 or 3, while p , X (A), and X (B) are large integers.

shows how such an attack would work. The adversary simply engages in a separate key exchange with each of the two
endpoints. After the key exchange the adversary can relay packets transparently between A and B by decrypting with
one key and encrypting with the other; it can also read the packets and manipulate them in any way whatsoever.

g, p, Y(A)

g, p, Y(C2)

ENDPOINT A ATTACKER C ENDPOINT B

choose g, p,
random secret X(A);

compute Y(A) = g        mod p

compute Y(C1)        mod p
X(A)

compute Y(A)          mod p
X(C1)

compute Y(B)          mod p
X(C2) compute Y(C2)        mod p

X(B)

X(B)

X(A)

choose random secret X(B);
compute Y(B) = g        mod p

Y(B)

Y(C1)

choose random 
secrets X(C1), X(C2)

and do similar computations

equal

equal

Fig. 7. A man-in-the-middle attack on Diffie-Hellman key exchange.

Fortunately, the solution to this problem is straightforward. A and B must have identities and public/private key
pairs, and must authenticate each other before the key exchange. Then protocol packets must bear the sender’s digital
signature. Even if the attacker can read Y (A) and Y (B), it can do nothing with them.

4.3 Three IP cryptographic protocols

This section provides an overview of security in the three most important cryptographic protocols in the IP suite:

• Transport Layer Security (TLS) is the successor to Secure Sockets Layer, and is an extension of TCP. Two versions
of TLS, 1.2 and 1.3, are in widespread use.

• Quic [22] is a new protocol proposed as an alternative to TLS. Its security mechanisms are similar to TLS 1.3.
• “IPsec” refers to a family of related IP protocols, comprising the Authentication Header and Encapsulating
Security Payload (ESP) protocols, each of which can be used in “transport mode” or “tunnel mode.” ESP is more
useful than Authentication Header, so only ESP will be discussed here.

These protocols provide endpoint authentication, data integrity, data confidentiality, and forward secrecy. They have
interesting differences, and the differences are significant for their use in compositional network architectures.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 15

4.3.1 Protocol embeddings. Within a network, session protocols can be composed, so that the same session benefits
from the services implemented by multiple protocols. When two session protocols P and Q are composed, one of them
is embedded in the other.

TLS is composed with (embedded in) TCP. If the Uniform Resource Locator (URL) of a Web site begins with https://,
then its clients should make requests of it using IP protocol TCP and destination port 443, signifying the use of TLS
embedded in TCP. Figure 8 shows packet formats for TLS, ESP in transport mode, and ESP in tunnel mode. Fields are
labeled to show which headers belong to embedded and embedding protocols.

ESP PACKET, TUNNEL MODE

TLS PACKET

ESP PACKET, TRANSPORT MODE

IP
header

TCP
header

TLS
header data MAC

IP
header

ESP
header

TCP
header data MAC

IP
header
(lower)

IP
header
(upper)

ESP
header

TCP
header data MAC

network
header

underlay
network
header

overlay
network
header

embedding
protocol
header

embedding
protocol footer

embedded
protocol

footer

underlay
protocol
header

underlay
protocol

footer

overlay
protocol
header

overlay
protocol

data

embedded
protocol
header

embedded
protocol

data

Fig. 8. Packet formats for cryptographic protocols, slightly simplified. The Message Authentication Code (MAC) is a footer that
assists in message authentication. Pink parts of a packet are encrypted, while gray parts are authenticated.

When ESP is used in composition with TCP in transport mode, TCP is simply embedded in ESP. In contrast, ESP in
composition with TCP in tunnel mode is an instance of layering (recall §3.3). An entire overlay packet with IP/TCP
headers and data is encapsulated in the data part of an underlay IP/ESP packet. So the important distinction between
ESP transport mode (session-protocol composition with TCP) and ESP tunnel mode (layering composition with TCP) is
that in tunnel mode there is an upper IP header with a completely different destination than in the lower IP header.
Intuitively, the upper destination is the ultimate destination of the TCP session, while the lower destination is the next
hop in the session path (see §4.4.1).

Quic is embedded in UDP, and also uses destination port 443. When a client accesses an https:// Web site for the
first time, it should use TLS. If responses carry an “I support Quic” code, subsequent requests from that client to that
server should use Quic, with TLS as a fallback in case of problems.

4.3.2 The setup phase. In a TLS 1.2 session, the client and server first have a TCP (control) handshake, in which they
establish the session identifier and other parameters. They then begin a TLS 1.2 (control) handshake, which performs
three tasks: (i) endpoint authentication (§4.2.1), (ii) negotiation of a “cipher suite,” and (iii) key exchange (§4.2.3). Usually
the accepting endpoint is authenticated with a certificate and the initiating endpoint is not, because the acceptor is a
server and the initiator is a client.

TLS supports many different methods for exchanging keys, encrypting data, and authenticating message integrity
(see below). For each of these tasks there are many possible algorithms (counting all variations of a few basic algorithms).
A “cipher suite” is a collection of algorithms and parameter choices for doing all the cryptographic tasks within a
security protocol. The most important parameter choices govern key length, because key length has a big effect on the

Manuscript submitted to ACM



16 Pamela Zave and Jennifer Rexford

overall security of cryptography. To negotiate a cipher suite, the initiator sends all the cipher suites it implements, and
the acceptor chooses one that it also implements and sends back the choice.

The TLS 1.2 handshake adds two round-trip times for TLS setup on top of the one round-trip for TCP setup. Slightly
simplified, there is one round-trip for authentication and negotiation, and one for key exchange. The property of forward
secrecy is achieved because fresh symmetric keys are computed for each session.

Security in TLS 1.3 is very similar to the security in Quic. One difference between TLS 1.2 and Quic (or TLS 1.3)
is that Quic disallows some older cipher suites that are known to be insecure, and requires longer keys. Another
difference is that Quic/TLS 1.3 setups are faster than TLS 1.2 setups. For faster setups, Quic combines the initial transport
handshake with the initial security handshake. After this there is one additional round-trip for key exchange. Further,
the key-exchange round-trip can be combined with the first data round-trip, because the client’s first data request is
allowed to use a less-secure symmetric key; the server’s first response and all subsequent data packets are encrypted
with the final, secure symmetric keys. Even further, this one-round-trip setup can be eliminated entirely if the client
has saved authentication and negotiation information from previous contact with the server. In this “zero round-trip”
setup, the first round trip combines data and key exchange as above.

ESP endpoints authenticate each other if required, negotiate cipher suites, and exchange keys by means of the
Internet Key Exchange (IKE) protocol. The result is that each ESP endpoint has long records called “security associations”
including choices of cipher suite and actual keys. Use of full IKE to set up an ESP session is not always necessary
because security associations can also be introduced into ESP endpoints by configuration, or saved from previous
negotiations. Needless to say, if perfect forward secrecy is required, longer-term parts of a security association can be
re-used, but there must be a new key exchange for symmetric keys.

4.3.3 Data integrity and confidentiality. In all three protocols, data and some headers are encrypted with a shared key by
the sender, and decrypted using the same key by the receiver. A different shared key is used in each direction. According
to the mathematics of symmetric-key cryptography, encryption satisfies the requirement of data confidentiality.

The requirement of data integrity is satisfied by the process of “message authentication.” Each packet is sent with
a “message authentication code” (MAC) computed from the authenticated data d by appending to the data a shared
authentication key k , and then applying a cryptographic hash function (§4.2.2) to d + k . The MAC H (d + k) is then
appended to the data in the packet. As with encryption keys, all three protocols generate authentication keys during
key exchange, and use a different authentication key in each direction. The packet receiver performs the same MAC
computation and expects it to result in the same MAC that it received in the packet. If an attacker inserts or changes
packets while they are being transmitted, it will not be able to compute correct authentication codes for the packets,
and the discrepancy will be detected by the receiver.

This algorithm alone has the limitation that an attacker with access to the packet stream can still delete, re-order, or
replay packets, even though it cannot create new ones. TLS and ESP require different solutions to this problem, because
of the differences in embedding visible in Figure 8.

One might think that this problem would be solved for TLS (both versions) by the fact that the enclosing TCP packets
have byte sequence numbers. TCP headers are not encrypted, however, so an attacker-in-the-middle could alter them
to make even an altered TCP byte stream look correct. The actual TLS solution is for each endpoint to keep track of
packet sequence numbers as TLS packets are sent and received. The sequence number is not transmitted directly, but it
is included in the bit string hashed to compute the MAC. For a packet to be accepted, the receiver must be re-computing

Manuscript submitted to ACM



Patterns and Interactions in Network Security 17

its MAC with the same sequence number that the sender used. This works because TLS is embedded in TCP, so the
authenticated data and MAC are presented to the authenticator reliably and in sending order.

Message authentication in ESP and Quic must work differently, because their packets may not be presented to the
authenticator in sending order. In these protocols, the headers contain explicit packet sequence numbers, which are
included in the data on which the MAC is computed. The authenticator cannot predict the sequence number of the next
packet it will see, so it cannot detect deletion or re-ordering attacks (which, after all, might not be attacks but flaws in
the network). Rather, authentication checks only for received packets with sequence numbers that have already been
received, and deletes them. This is sufficient to defend against replay attacks, which are part of many man-in-the-middle
attacks, because an attacker cannot change the sequence number of a packet it replays.

4.3.4 Usage of cryptographic protocols. Almost all Web traffic is now encrypted, at least with TLS 1.2. Deployments of
TLS 1.3 and Quic are both growing rapidly, because of the motivation of shorter setup times. TLS is also widely used by
other application protocols. ESP is most commonly used to make “virtual private networks” (see §7).

Although cryptographic algorithms and protocols are proved mathematically, there is a big difference between
mathematical abstractions and code. In implementing the algorithms, efficiency is a top priority, and transformations
for efficiency can introduce bugs in addition to all the other bugs to which software systems are prone. Advances in
processor speeds and the exploitation of side-channels are making it easier to crack codes, so that increases in key
lengths become necessary—not even counting the unpredictable disruption that might be caused by quantum computing.
Cryptographic libraries are improved continually, but each machine is no more secure than its latest upgrade. It may
even be less secure, when it must use an older software version to communicate with an infrequently-updated machine.

4.4 Interactions between cryptographic protocols and other aspects of networking

Cryptographic protocols have significant interactions with other security patterns, which will be discussed when the
other security patterns have been presented. This section is concerned with the interactions of cryptographic protocols
with network architecture and network services other than security.

4.4.1 Layering. A network with cryptographic session protocols can be layered on top of one or more networks, as
explained in §3.3. Because each underlay level can implement an overlay link with a path of links, forwarders, and
middleboxes, users of an overlay network must accept that its packets can pass through many machines and physical
links unknown to them. But cryptographic protocols are designed to work in completely adversarial environments such
as these! Furthermore, the cryptographic properties of a session can be assumed to hold for any link that it implements,
so the properties guaranteed by cryptographic protocols propagate upward through layering.

4.4.2 Performance. Data encryption and message authentication increase required bandwidth and computational
resources. The overhead is modest, so it is not a concern in all cases. It is more likely to be a significant concern for
battery-operated devices, or for network elements that must decrypt and re-encrypt at high traffic volumes.

The most direct and significant performance costs of cryptographic protocols are incurred in the setup phase, by
endpoint authentication and key exchange, which consume compute resources and increase latency. Even with short
round-trip times, a small fraction of TLS 1.2 setups take 300 ms or more [29], due to increased computation time. We
have seen that newer protocols have reduced setup times aggressively, often by saving and re-using session state, but
this causes an inevitable loss of security [33].

Manuscript submitted to ACM



18 Pamela Zave and Jennifer Rexford

The performance issue is muchmore serious in applications for the Internet of Things (IoT), because these applications
tend to have periodic or irregular short communications from a large number of networked devices to centralized analysis
or publish/subscribe servers. Message Queuing Telemetry Transport, a protocol for IoT applications, is well-designed
from this perspective, because many short application communications can share the same TLS session.

For Message Queuing Telemetry Transport and all other application protocols with short or bursty communications
separated by intervals of inactivity, it is most efficient for many communications to share a single, long-lived secure
channel. Long-lived Internet channels have been difficult to maintain in the past, because various components in the
path of the channel would time out and close the channel during intervals of inactivity. It is easier now—TCP, TLS, and
DTLS all have keep-alive options, sending periodic keep-alive signals to keep long-lived channels open.

Architecturally, there are two ways to implement the optimization of sharing a secure channel. The first way is to
embed the application protocol in the security protocol. For example, if TLS is the security protocol, application headers
and data would be the data portion of TLS packets, as shown in Figure 8. Alternatively, an application network could
be layered on IP networks, as shown in Figure 9. The Session Initiation Protocol (SIP) is an application protocol for
control of multimedia applications. The SIP application network has links that are implemented by TLS sessions in the
IP underlay. The big difference between this architecture and protocol embedding is that the TLS sessions have different
endpoints (different sources and destinations) than the SIP application session does. This makes it more flexible than
protocol embedding, for two reasons: (i) The application network can insert its own middleboxes into the path of the
application session, as SIP always does. (ii) The TLS sessions can last longer than any communication between two
specific SIP endpoints, and can be shared by communications between many SIP endpoint pairs. Recall that embedding
and layering correspond to ESP transport mode and tunnel mode, respectively.

alice@
atlanta.com atlanta.com biloxi.com

bob@
biloxi.com

SIP
 network

SIP session

AAC AC BC BBCbridged
IP

 networks  long-lived TLS sessions

secure links implemented by TLS sessions

Fig. 9. A SIP application network layered on bridged IP networks.

4.4.3 Mobility. In its strongest sense, mobility enables a session to persist even though the network attachment of an
endpoint device is changing. This usually means that, at some level of the layering hierarchy, the network member on
the device is changing names within its network, or dying and being replaced by a member of another network. For
example, when a mobile phone moves from one cellular provider’s network to another, its IP name (for data service)
must change. Ideally the data sessions of the phone would persist across such moves, as its voice sessions do.

There is usually no interaction between mobility and cryptographic protocols, because the identity of a mobile
machine is at a higher level than the names that change. For instance, consider a Web server running on a virtual
machine in a cloud. Because of failures or resource changes, the virtual machine may migrate to a different physical
Manuscript submitted to ACM



Patterns and Interactions in Network Security 19

machine where it has a different IP name. But the identity of the Web server is its domain name, which is at a higher
level and does not change. Similarly, more than one server can have the same identity, as when a Web site of origin
delegates its identity to a content-delivery server by sharing its certificate and keys.

On the other hand, thinking about mobility brings up the possibility of normal mobility in reverse—the higher-level
identity moves or changes while the lower-level name remains the same. This can be a security issue: after Jane Q.
Public enters her password (§4.1), she might walk away from her machine, and then any other person who walks by
could retrieve her personal data and request transactions on her bank account. For this reason, secure distributed
applications require periodic re-authentications of the identity of the person using them, especially after idle periods.

4.4.4 Infrastructure control protocols. Control protocols are used by network infrastructure to maintain and distribute
network state. It is important to protect these protocols against subversion attacks (§2.1.2).

Unsurprisingly, some control protocols incorporate cryptography. For instance, Border Gateway Protocol Security is
a security extension to BGP that provides cryptographic verification of packets advertising routes. Similarly, Domain
Name System Security Extension protects DNS lookups by returning records with digital signatures.

In many cases, however, it is difficult for control protocols to rely on cryptography. An endpoint might not have a
certificate or other credential to prove its identity. The protocol might require high-speed, high-volume operation. Or,
the protocol might simply be too old to incorporate cryptography, even if it is feasible.

In these cases there are lighter-weight measures that can help. Network members that make requests should keep
track of their pending requests and not accept unsolicited replies. Replies should be checked for credibility, whenever
that is possible. Most effectively, a network member can include a nonce or random field value in a session-initiation
or request packet. Subsequent packets of the session must have the same nonce or random value, so that no attacker
without access to the previous packets of the session can send packets purporting to be part of it. Without the nonce,
an attacker could do something to trigger a query, then send a spurious answer to the query.

5 TRAFFIC FILTERING

Traffic filtering is performed by forwarders and middleboxes that are part of a network’s infrastructure. The network’s
routing ensures that designated traffic passes through one of these traffic filters, and the filter examines it for evidence
of flooding attacks, subversion attacks, or policy violations. If traffic seems to be part of an attack, the filter takes some
defensive action, most often simply discarding the traffic.

Content-based traffic filtering (§5.1) looks at the contents of individual packets or sequences of packets. Path-based
traffic filtering (§5.2) adds to this information about the paths along which traffic has traveled.

As in §4, the usual context of the discussion in this section will be a single network of any kind, or a set of similar
bridged networks such as the bridged IP networks of the Internet. After explaining traffic filtering in individual networks,
we return to the compositional view (§5.3), considering how traffic filtering interacts with other network mechanisms
and where it should be placed in a compositional network architecture.

5.1 Content-based traffic filtering

5.1.1 Signature-based-filtering criteria. Filtering criteria are predicates used to identify suspected traffic. Signature-based
filtering criteria examine specific header and data fields of packets. These criteria are used to detect most policy violations
and subversion attacks. Often the criteria are Boolean combinations of simple predicates such as destinationPort = 80

on the values of IP header fields. For example, suppose that an IP “firewall” (traffic filter) at the edge of a network is
Manuscript submitted to ACM



20 Pamela Zave and Jennifer Rexford

enforcing this policy: the only external traffic is for Web accesses, which of course require DNS queries. The direction
of a packet (inbound or outbound) can be determined from its source and destination names or from the link on which
it arrives. The firewall might be configured with these four rules:

(1) Drop all outbound TCP packets unless they have destination port 80.
(2) Drop all inbound TCP packets unless they have source port 80 and the TCP ACK bit is set.
(3) Drop all outbound UDP packets unless they have destination port 53.
(4) Drop all inbound UDP packets unless they have source port 53.

In the second rule, the ACK bit indicates that this packet is an acknowledgment of a previous packet, meaning that it is
not a TCP SYN packet.

These rules are sufficient for the purpose if all packets through the firewall obey the TCP protocol exactly, but of
course an attacker may not be so polite. A safer approach would be to make the firewall stateful by having it maintain a
table of all ongoing TCP connections. Then the second rule above would be replaced by “Drop all inbound TCP packets
unless their source and destination names and ports identify them as belong to an ongoing TCP session.” If a firewall is
stateful, it is crucial that all packets of a session pass through the same firewall. This property is called “session affinity.”

For reference throughout §5.1, Figure 10 is a table summarizing characteristics of four common types of traffic filter
in IP networks. The classification is at least as much historical and marketing-oriented as it is technical! It is a list of
products that have sold well in the past, not a prescriptive list of which options are possible.

FIREWALL INTRUSION 
DETECTION
SYSTEM

INTRUSION
PREVENTION
SYSTEM

FILTERING
CRITERIA

predicates on IP
packet headers

drop packets

predicates on IP packet
headers; can have a
table of ongoing sessions

drop packets

any

raise an alarm, divert
packets for further
analysis

ACTIONS
TAKEN

REQUIRE
SESSION
AFFINITY?

any

drop packets,
rate-limit packets,
refuse requests,
record packets

no yes if stateful yes yes

ROUTER

Fig. 10. Examples of common traffic filters in IP networks.

IP routers sometimes do dual duty as traffic filters. To do this, they are configured with predicates on packet headers,
called “access control lists.” Routers must work even faster than firewalls, so they do not perform stateful filtering.

For filtering that looks at packet data as well as headers, networks often use commercial products known as “intrusion
detection systems” and “intrusion prevention systems.” These filters can use any filtering criteria for any purpose.
Signature-based filters against spam and viruses look for keywords, sometimes keywords in specific positions, and
other known attack patterns. Their criteria can include regular expressions matching fields of arbitrary length. They
can also be stateful, and check whether protocols are being followed. These filters can be valuable commercial products
because of the intellectual property in their filtering criteria. Like all security software, to be effective, they must be
kept up-to-date.

In the common case that TCP sessions are being filtered for subversion attacks or policy violations, the filter should
reconstruct the correct byte stream (restoring packet order, replacing lost bytes by retransmitted ones) before filtering.
If there is no reconstruction, attackers can hide attacks simply by splitting attack data over multiple packets. Even if
Manuscript submitted to ACM



Patterns and Interactions in Network Security 21

there is reconstruction, there may be ambiguities exploitable by attackers. For example, if there are missing packets,
some bytes may be retransmitted and received twice. An attacker can engineer the transmitted stream so that some
bytes will have to be sent twice, and place attack bytes only in the second transmission. The filter might check only
the first bytes, and the receiver might use only the second bytes. The surest way to avoid all such ambiguities is to
have a “traffic normalizer” middlebox in the session path, before both filter and destination, to reconstruct a single
unambiguous packet stream received by both of them [15].

One advantage enjoyed by TCP filters is that attacks require communication in both directions. Consequently,
attackers cannot easily hide by giving false source names—if they did, there would be no two-way commnication. The
sources of flooding attacks, on the other hand, can hide themselves behind false source names. This problem is also an
opportunity, because having a false source name is a good indicator that a packet is part of a flooding attack. Forwarders
(and other filters associated with them) are well-situated for using this as a filtering criteria, because forwarders have
information about routing. For example, “ingress filters” in IP networks check incoming packets to see if the prefixes of
their source names match expectations. This is an excellent addition to an access network, which may have detailed
knowledge of its user members, or an Internet service provider’s network, which knows the IP prefixes allocated to
each access network bridged with it. “Unicast reverse path forwarding” in a forwarder accepts a packet’s source name
as valid only if its forwarding table specifies forwarding to the source name on the same two-way link on which the
packet arrived. Unfortunately reverse-path checking cannot be used in the high-speed core of the Internet, because
routes there are not necessarily symmetric.

5.1.2 Measurement and statistical analysis. Signature-based filtering criteria have two major limitations: they cannot
detect new (called “zero day”) attacks, and it is difficult to use them to detect flooding attacks, whose individual packets
look normal (with the exception of false source names). In response to these limitations, forwarders collect data on
large amounts of traffic, and send it to other network members for analysis. Analysis can measure attributes over large
collections of packets. It can then look for known attack patterns, especially of flooding attacks; for example, a single
destination receiving a large number of response packets from many different sources may be the victim of a reflection
attack (§2.1.1). Analysis can also detect anomalies, which are new divergences from normal traffic patterns that may
indicate new attacks. Anomaly detection uses statistical algorithms, including machine learning.

For typical traffic measurement in IP networks, routers collect selected data and send it to analyzers in some well-
known record format such as NetFlow or IP Flow Information Export (IPFIX). Data can be collected at multiple locations
and different levels of granularity. The volume of data can be reduced by recording only headers (rather than entire
packets), by sampling the packets (rather than collecting information about all packets), or by focusing on specific
subsets of the packets. Most importantly, a flow comprises a group of packets close together in time that have various
header fields in common. Creating a single record for a flow helps reduce the volume of data while still providing a
timely and detailed view of the network traffic.

Anomaly detection is a very attractive idea, but it is also very difficult in practice. One major reason is that normal
Internet traffic is highly variable, not to mention unusual-but-innocent occurrences such as congestion due to failures,
or a legitimate flash crowd [25]. The other major reason is that the cost of mistakes (“false positives”) is high, as many
legitimate packets are discarded. The best use of anomaly detection may be to discover and understand new attacks,
then turn their characteristics into signatures or measurable patterns [35].

5.1.3 Defensive actions. Obviously, the most common defensive action that a filter can take is to drop packets, but
there are other possibilities.

Manuscript submitted to ACM



22 Pamela Zave and Jennifer Rexford

The only difference between “intrusion detection systems” and “intrusion prevention systems” is that detection
systems only raise alarms, while prevention systems automatically take action against suspected attacks. It might
seem that automatic action is always better (it is certainly faster), but there are good reasons for keeping operators
and enterprise customers in the decision loop. If a suspected attack is a false positive, much legitimate traffic may
be dropped. If an operator deploys additional resources on behalf of an enterprise customer that is under attack, the
customer will have to pay for them. In rare cases, the defense against a suspected attack may even be a counter-attack,
which is wrong and even dangerous (in a military setting) if not well-justified.

What actions are normally taken by intrusion prevention systems, other than dropping packets? If there is uncertainty
about the packets, a filter can rate-limit them or downgrade their forwarding priority rather than dropping them. Rather
than dropping session-initiation requests, a filter could reply to them with refusals, which would discourage retries. A
refusal to a TCP SYN (request) is a TCP RST (reset). A refusal to an HTTP request is an error code.

Finally, when filtering is being used to defend against policy violations, sometimes the filter records packets for
the purposes of investigation and legal evidence. Recorded packets are usually not dropped but forwarded on to their
destinations, to keep the investigation secret from its targets until it has been completed.

5.1.4 Resources and capacity. Traffic filtering expends a lot of network resources, so the detailed design of a traffic-
filtering mechanism must be resource-sensitive. How does a network ensure that its traffic filters do not themselves
become traffic bottlenecks during flooding attacks?

There are two approaches to providing sufficient filtering capacity. The first is to host traffic filters on high-capacity
machines dedicated to this purpose. The second is to run traffic filters on virtual machines in a cloud. In this approach
it is possible to implement “dynamic scale-out,” which means that as the load increases during an attack, more virtual
machines are allocated for the filtering task. All the filter types in Figure 10 have been implemented with both approaches,
although the high-capacity-machine approach is more often applied to routers and firewalls.

The situation today is fluid, as flooding attacks are becoming more severe. A recent flooding attack on a number of
DNS servers [9], including amplification, generated traffic at 10-20 times normal volume, with bursts up to 40-50 times
normal volume, and reportedly a maximum of 1.2 Tbps (1200 Gbps). To provide some intuition about the resources
needed to handle such attacks, Figure 11 shows some typical capacities for servers and various kinds of traffic filters.

TYPE OF PACKET FILTER OR SERVER APPROXIMATE CAPACITY

target server

intrusion prevention system
(reconstructs byte stream)

stateful �rewall (examines headers only)

IP router with access-control list

1 - 10 Gbps / core

1 - 20 Gbps / core

20 Gbps / core

100 Gbps / link

Fig. 11. Data-processing capacities of common traffic filters and servers.

Of course these numbers are subject to frequent change. On the positive side, converting an algorithm from software
to programmable hardware increases its speed by a factor of about 10, as does converting it from programmable
hardware to fixed-function hardware. On the negative side, commercial intrusion-prevention systems frequently fall
short of advertised capacity. There are adversarial workloads designed so that the TCP byte stream is especially
Manuscript submitted to ACM



Patterns and Interactions in Network Security 23

difficult to reconstruct. More commonly, rule-checking is the performance problem, because it is more expensive than
reconstructing the byte stream; performance is improved when necessary by dropping rules.

5.2 Path-based traffic filtering

From the viewpoint of a victim of a flooding attack, the network is a tree with many possible packet sources and a
single packet sink at the root. From the viewpoint of a packet source, its access network is the first network in all its
outgoing paths whose administrative authority is different from the owner of the machine (assuming for simplicity that
that there is only one such network). The access network of a machine is significant because it is the first network that
is able to filter outgoing packets of the machine. Often the machine belongs to its access network, but the machine
might belong to a home network, which carries its packets to its access network.

Path-based traffic filtering augments filtering criteria based on the contents of packets, as discussed in the previous
section, with criteria based on the path along which packets traveled. There are two reasons for introducing path-based
filtering. The first reason is that path information can improve the precision of filtering criteria, so that fewer good
packets are accidentally included. For example, say that the overall load on a server suggests a flooding attack, and
intrusion detection proposes a candidate filtering rule based on packet contents. If we know that most paths to the
server are delivering a trickle of these packets, and one path’s load is dominated by these packets, there is a good chance
that only the packets on the dominated path are attack packets. The second reason is that—with knowledge of where
packets came from—traffic filtering can be moved from its usual downstream location, near the target, to upstream
locations close to packet sources. Upstream filtering has three main advantages:

• If filtering is farther from the target, the damage done by attack traffic is lessened, because attack traffic is carried
for shorter distances along fewer links. Note that the damage of a flooding attack is not limited to the intended
target, because traffic to many other destinations will also suffer because of congested links.

• If a traffic filter is close to sources of attack traffic, it may have more information about the sources. The access
network sees all of a suspected source’s traffic, so attack patterns are more likely to be detectable. An access
network may also know more about the type and reputation of its sources (device type is relevant because some
operating systems and vendor hardware are more easily penetrated than others). More precise filtering means
less collateral damage.

• Very often, attack packets are coming from a botnet, with a large number of sources well-distributed across the
public Internet. So the total amount of available filtering resources near sources greatly exceeds the total amount
of resources available near a target.

The principal disadvantage of upstream filtering is that in IP networks, the source name in a packet is not a reliable
indicator of where it came from. Forwarders can attach meta-data to packets so that servers near targets can reconstruct
packet paths, but this is problematic because of the volume of data involved and the danger of adversarial interference.
All the proposals for “traceback” of this kind must make difficult trade-offs to balance the costs and benefits [2, 25, 32, 39].
In addition, upstream filtering has two other disadvantages:

• Upstream networks may not have sufficient incentive to use their resources to protect targets that are remote
from them. It has been argued that networks under attack might be more willing to accept incoming packets
from cooperating upstream networks, which will give the users of the upstream networks better service [2].
Historically, however, cooperation between the networks of different operators has been scarce [14].

Manuscript submitted to ACM



24 Pamela Zave and Jennifer Rexford

• Even if source networks are willing to cooperate with target networks, the necessary coordination is not easy.
Like traceback, coordination along packet paths invites its own security attacks.

Currently, the net effect of all these factors is that path-based traffic filtering is uncommon in the Internet. However,
future changes might cause the factors to be weighted differently. For example, individual IP networks (under single
ownership) now seem to be growing in size and geographical scope. If this trend continues, it will become more common
for both the upstream and downstream segments of a path to an attack target to be controlled by the same operator. If
so, then the administrative barriers to upstream filtering will disappear.

5.3 Interactions between traffic filtering and other aspects of networking

5.3.1 Routing. For a filtering tree or graph to work correctly, all packets destined for the protected target must pass
through one or more forwarders or middleboxes acting as filters, in accordance with the intended design. This is the
province of routing, which populates the forwarding tables used by forwarders. Routing is performed in several different
ways—sometimes by a distributed algorithm that forwarders run among themselves, and sometimes by a centralized
algorithm running in a separate controller.

Routing packets through a filtering tree may seem straightforward, but there is a different tree for each destination,
and routing algorithms are also concerned with reachability, performance, fault-tolerance, and other policy constraints.
For this reason, there has been considerable research on verifying that forwarding tables are correct, or on generating
them correctly, where the correctness criteria include constraints about steering packets through filters [4, 10, 19, 24].

Another issue that complicates routing through a filtering tree is the fact that many traffic filters require session
affinity—all the packets of a session, in both directions, must go through the same filter. Wide-area routing frequently
creates different paths for packets traveling in different directions between the same two endpoints. Even packets
traveling in the same direction may be spread across multiple paths because there has been a failure in one of the
paths, or a need for better load-balancing. Within a cloud, where many virtual machines are running the same filtering
software for scalability, a session can be assigned to any virtual machine. The assignment must be remembered, however,
so that all packets of the session are steered in the right direction. Shortcuts such as “assign a session to one of four
virtual machines based on the last two bits of some identifier” work well in static situations, but fail when filtering
resources must be scaled up or down because of fluctuations in load.

5.3.2 Layering. Almost always, a packet arriving at a machine is being transmitted through multiple layered networks
simultaneously, for example an Ethernet local area network, an IP network, and an application network. Figures 3
and 4 combined illustrate this simple example. In addition, layered between the application network and the lowest
IP network there is often a virtual private network (§7.2.2) or other IP network. If the machine is actually a virtual
machine in a multi-tenant cloud, there is sure to be at least one network between the tenant’s IP network and the
Ethernet, with the job of sharing cloud resources among all tenants.

The layers are significant because attacks can take place in any of them. This is both a challenge and an opportunity.
If only packets in the lower layers are filtered, then many higher-level attacks will be concealed in the higher-level
packets, which are mere data to the lower-level networks. For example, recall that IP intrusion detection systems look
into packet contents for signs of malware at specific locations. These systems are assuming there are no networks
layered between the filtering network and the application network; if there are additional networks, then the packet
formats will be different, and the filtering criteria will be useless.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 25

On the other hand, much can be gained by filtering packets separately in each network. Already there are special
filters for Web requests and email messages, which are packets in their own application-oriented networks. These filters
are deployed as middleboxes in these networks. This idea can be extended to intermediary layers, where each filter is
attuned to the configuration, protocols, and vulnerabilities of its particular network. It is often possible to optimize
architectures so that filters at multiple levels can be located on the same machines.

The second interaction between filtering and layering concerns networks below the filtering network in the layer
hierarchy. Imagine that you have designed a filtering mechanism within a network, and convinced yourself that it is
correct. Your argument concerns (among other things) paths in the network to a potential attack target, and shows that
routing places an appropriate traffic filter in every path. Whether you remembered to state it or not, your argument
that no (or a limited number of) attack packets reach the target depends on the assumption that attack packets do not
suddenly appear inside the perimeter of traffic filters. It is easy enough to check that the network members inside the
perimeter are part of the network infrastructure and therefore trusted, but what about the links? It must be ensured
that no packet is received on trusted link that was not sent on the link. If the link is implemented rather than physical,
it must be proved that the implementing network does not inject packets into the implementation of the link. This
might seem like a fanciful concern, but it is not. An Ethernet can be penetrated physically, and it is easy to make a
penetrated Ethernet inject packets into the links of networks layered on it [21]. In a multi-tenant cloud, the links of
a tenant’s network (where the filtering will take place) are virtual links implemented by sessions in the lower-level
network that shares resources among tenants. If the cloud network does not isolate tenants properly, then packets sent
by virtual machines of a different tenant could be delivered as part of this tenant’s sessions.

5.3.3 Cryptographic protocols. There is a profound interaction between cryptographic protocols and traffic filtering. If
a user session is encrypted, then middleboxes in general, and traffic filters in particular, cannot read anything in the
session packets beyond their headers. One response to this interaction is increased interest in filtering based on traffic
attributes that encryption does not change, e.g., packet timing and sizes. It may be too early to tell how effective this
will be as a defense, considering that its recognized successes are spying and tampering attacks [28].

In some cases the relationship between users and filters is not adversarial, and there are three techniques for managing
this interaction in more-or-less cooperative cases. Before presenting these techniques, we will explain the interested
parties and their powers. We can think of their interactions as a game, one instance of which is illustrated by Figure 12.
At the top of the figure we see what the initiating user can do. It chooses the acceptor of the session, and if the acceptor
agrees, the data of the session will be encrypted end-to-end.

encrypted
acceptorinitiator

for
perfor-
mance

against
users

against
users

against
users

for
acceptor

NETWORK
MIDDLEBOXES

MALICIOUS
USERS

A B

C

D E

initiator’s region acceptor’s region

Fig. 12. A game: cryptographic protocols versus traffic filtering.

Manuscript submitted to ACM



26 Pamela Zave and Jennifer Rexford

At the second level of the figure, we see what the network can do. The network has the power to insert middleboxes
anywhere in the path of the user session, simply by routing session packets through them. The figure shows some
common middleboxes, inserted in likely places, which are often in regions of the session path near the two endpoints.
A middlebox might have the purpose of enhancing performance, for example by caching or compression (B). For
maximum effectiveness, it should be placed near the initiator, as shown. A middlebox might be a traffic filter, with
the purpose of protecting the acceptor from subversion attacks or policy violations that might damage it (E). This
middlebox will probably be placed near the acceptor. Finally, the network might insert traffic filters that are working
against the interests of the initiator and acceptor, either by preventing them from violating policies, or by spying on or
tampering with their communication (A and D). These middleboxes might be placed in either region.

At the third level of the figure, we see that other malicious parties can also insert middleboxes in the path by various
techniques such as wiretapping, for the purposes of spying and tampering (C). Fortunately, physical security and
security mechanisms in other networks constrain such attacks. In the illustrated example, a malicious party is able to
eavesdrop in the middle of the session path, but not near the endpoints.

If network middleboxes are working on behalf of the user endpoints of an encrypted session, and if they need to
read data to do their work, then the cleanest arrangement is to make the middleboxes part of an application-oriented
overlay network. This is illustrated by a SIP network in Figure 9. In the figure, data traveling on the links of the SIP
network is encrypted by TLS in the IP networks, but each middlebox in the SIP network receives and sends plaintext.

The second and third techniques can be deployed within the bridged IP networks of the Internet. In the second
technique, the network introduces a proxy—a middlebox that is a session-protocol endpoint—on behalf of the acceptor.
The proxy accepts the initiator’s TLS session (so it must have the server’s identity and secret keys) and makes a TCP
session between itself and the original acceptor. The proxy decrypts packets from the initiator and sends their contents
in plaintext packets to the acceptor, so they can be read by any middleboxes in the path of the TCP session. In Figure 12,
the acceptor would prefer a proxy between D and E, and the network would prefer it before D. The general idea of
proxies that cooperate with endpoints is developed further in Middlebox TLS (mbTLS) [30].

The third and final technique aims to preserve both middlebox functionality and user privacy, based on new results
in cryptography. At one extreme, fully homomorphic encryption [12] makes it possible to compute any function on
encrypted data without learning more about the data than the function’s value. Although fully homomorphic encryption
is currently impractical (it is too expensive computationally, by orders of magnitude), there are less capable algorithms
for computing functions on encrypted data with performance that may be feasible for current use [34].

6 DYNAMIC RESOURCE ALLOCATION

Because flooding attacks are resource wars, both network infrastructure and user members can defend against them by
allocating more resources when they are under attack. Cloud computing has made it easier for networks to scale out
traffic filters, and for users to scale out servers. Even in server-centric defenses the network is usually involved, for two
reasons: (i) even when server resources are sufficient to absorb an attack, network bandwidth must also be sufficient to
handle the attack, and (ii) the network provides the service of distributing the load across servers.

Dynamic resource allocation works better if resource replicas are geographically distributed, so that some replicas
can be reached when other parts of the network are too congested. Because attacks on DNS servers are so common and
damaging, it is especially important to have distributed authoritative DNS servers for popular domain names. Queries
are distributed across the replicas by means of IP anycast. If there are five replicas sharing the load and one has been
overwhelmed by an attack, IP anycast may not be dynamic enough to redirect queries away from the failed replica, but
Manuscript submitted to ACM



Patterns and Interactions in Network Security 27

at least queries directed by anycast to the other four will succeed. In Figure 13 there are three authoritative DNS servers
for the domain example.com; IP anycast directs the client’s query to the closest one.

client

author.
DNS

author.
DNS

author.
DNS

request
(example.com)

server
A server

B

server
Cserver

D

reply =
server D

content request

Fig. 13. Resource replication in a content-delivery network.

A “content-delivery network” provides many replicas of its customers’ content, geographically distributed so that
the latency of content delivery to each client is minimized. In Figure 13 the authoritative DNS servers for customer
domain example.com are aware that its content is available at servers A through D, and also maintain information
about location and recent performance of the servers. So each DNS server can return to a client the IP name of the best
content server for it to contact.

Replication of service resources is easiest when servers are responding to queries based on fairly static data. When
queries can update service data, the service implementation must do extra work to keep the data replicas in some
adequate state of consistency. (The study of distributed computing has produced many algorithms for replicated data,
satisfying many different definitions of consistency.) In some cases dynamic data can be distributed across multiple
sites more easily by sharding, e.g., by partitioning the keys of a key-value store so that each site is responsible for a
subset of the keys. No one key-value pair will be replicated, but the total resources available will be greater.

Instead of dynamically allocatingmore server resources during attacks, the same result can be achieved by dynamically
reducing the work per request that servers perform. For example, a flood of DNS queries is amplified when servers
query other servers. A very effective defense against these attacks is longer times-to-live for cache entries, perhaps
30 minutes, in recursive and local DNS servers [27]. If local entries are cached longer, there will be fewer queries and
retries made to authoritative servers. There are many good reasons for DNS cache entries with short times-to-live, but
these can be changed as an adaptive measure during attacks.

SYN floods (§2.1.1) are such a serious problem that several specialized techniques have been developed for reducing
server work per SYN, and these may be in use at all times rather than turned on just during attacks. In a “SYN cookie”
defense, the server responds to a SYN with a SYN+ACK packet having a specially-coded initial sequence number (the
cookie). It then discards the SYN, using no additional resources for it. If the SYN was an attack, it has caused little
damage. If the SYN was legitimate, on the other hand, it will elicit an ACK from the initiator with the same initial
sequence number incremented by one. By decoding the sequence number, the server can reconstruct the original SYN
and then set up a real TCP connection.

Dynamic resource allocation is not much different from static resource allocation, so its interactions with other
aspects of networking are already understood. Services under attack may be available in some places and not in others.

Manuscript submitted to ACM



28 Pamela Zave and Jennifer Rexford

7 COMPOUND SESSIONS AND OVERLAYS FOR SECURITY

Like cryptographic protocols, compound session and overlays are employed by users to defend themselves against
spying and tampering attacks (§2.1.4). Cryptography is not sufficient because it does not conceal packet headers.

Compound sessions and overlays are mechanisms through which users can insert their own middleboxes into session
paths, and use them to conceal header information. Thus the entire topic of this section can be seen as an interaction
between two patterns, namely compound sessions/overlays and traffic filtering.

7.1 Compound sessions

7.1.1 Definition of compound sessions. A user member initiating a session to some far endpoint can insert another user
member into the session path as a middlebox. To do this, the initiating user must give the name of the middlebox as the
destination name of its outgoing packets, as shown in Figure 14. The middlebox must learn the initiator’s intended far
endpoint, for example by getting it from some other field of the session-initiation packet. Then the middlebox changes
the headers of the packets it receives (source becomes its own name, destination becomes the initiator’s intended)
and sends them out. Recall that a middlebox that behaves in this way is called a proxy. Each proxy accepts a session,
initiates another session with a different header, remembers the association between the two sessions, and relays
packets between them. A compound session is a chain of simple sessions composed by proxies in this way.

A compound session can have more than one proxy: the session-initiation packet can contain a list of proxies to
visit, or a proxy can get the name of the next proxy or endpoint by using the session protocol to engage in a dialogue
with the initiator. Because of the names in forward packet headers, return packets naturally pass through the same
proxies in reverse order, and have their headers re-translated in reverse order.

The principal security significance of compound sessions is that each simple session has a different header, so
compound sessions can be employed by users to obscure header information. In Figure 14, an observer between V and
GW cannot observe the true acceptor of the compound session, at least from packet headers alone, and an observer
between GW and P cannot observe the true initiator of the compound session.

Compound sessions are useful in many situations, but they have some limitations. After covering compound sessions,
we will introduce overlays for security. These use explicit layering to create implicit compound sessions, and can do
more for users than compound sessions alone.

7.1.2 Proxies in access networks. Perhaps the oldest example of a proxy for evading traffic filtering is an “application
gateway,” which is installed in a private IP network for the benign purpose of evading the too-simple filtering imposed
by a firewall. For example, an enterprise firewall may block all outgoing sessions except Web accesses. However, the
enterprise may also wish to allow outgoing sessions of another kind, when they are initiated by specific users. The
firewall cannot enforce this policy because it does not know the mapping between internal IP names and users.

An application gateway for the application, for instance Telnet, solves this problem, as shown in Figure 14. To use
it, a user initiates a Telnet session to the application gateway inside the enterprise network. The gateway is a Telnet
proxy. By means of an extension to the Telnet protocol, which is embedded in TCP, the user supplies a password to
authenticate himself to the gateway, and also the name of the real Telnet acceptor. The gateway initiates a Telnet
session to the real acceptor outside the enterprise network, and joins the two simple sessions in a compound session.
The enterprise firewall allows outgoing Telnet sessions from the application gateway only.

Manuscript submitted to ACM



Patterns and Interactions in Network Security 29

initiator Telnet
gateway acceptor

V PGW

private IP network public Internet

src = V, dst = GW,
dstPort = 23

src = GW, dst = P,
dstPort = 23

compound TCP session

�rewall

Fig. 14. A Telnet application gateway inside the access network of V .

In this example, the operator of the enterprise network is cooperating with the user by providing the gateway. For
the operator, it is easier and more efficient to provide the required user functions with an application gateway than
with a greatly-enhanced firewall.

In another cooperative situation, the operator of a private network might provide a proxy (with a public name) that
initiators outside the network can connect to. The proxy authenticates the initiator as deserving the rights of members
of the private network. Then, through the proxy, the initiator can connect to any member of the private network.

7.1.3 Proxies in transit networks. A user can evade filtering in his access network more easily by connecting to a
friendly proxy in another network. This will be illustrated by the use of a proxy to reach a Web server.

In Figure 15 a secure dynamic link in a Web-based application network is implemented by a compound TLS session
in bridged IP networks. First the browser’s request causes initiation of a TLS session with a friendly proxy outside the
client’s access network. A proxied TLS session is like a normal TLS session except that: (i) instead of looking up the
domain name dangerous.com and using its IP name as the destination of the session, the client’s IP interface uses the
proxy’s IP name as the destination of the session; (ii) the client’s IP interface expects and verifies the certificate of the
proxy, not the Web site; (iii) the proxy decrypts the HTTP request in the TLS data, looks up the domain name, and uses
the result of the lookup as the destination of an outgoing TLS session. After this the proxy relays packets between the
two simple sessions of the compound TLS session (note that the proxy must decrypt and re-encrypt the data in each
packet, because symmetric keys in the two simple sessions are different).

[browser] dangerous.
com

Web-based
application

 network

client proxy server

client’s
access network

public
Internet

dynamic link

HTTP session

client’s
machine

server’s
machine

proxied
TLS session

TLS session

src = client, dst = proxy src = proxy, dst = server

Fig. 15. A proxied TLS session protects the client’s privacy in his access network, and provides anonymity at the Web server.

Because of the compound session formed by the proxy, the client’s access network does not know what server the
client is connected to, so the client has privacy from spying and tampering in his access network. The client also has
anonymity at the server, because the server has no information about the client.

Manuscript submitted to ACM



30 Pamela Zave and Jennifer Rexford

One disadvantage of this mechanism is that the client has no privacy from the proxy. Another disadvantage comes
from the fact that the names of helpful proxies are usually publicly available (so users can find them), which means
that they are available to the user’s adversaries as well. Consequently, if the clients’s access network is censoring
the network activity of its users, it can simply block packets destined for external proxies. These disadvantages are
addressed in subsequent sections.

7.1.4 Deflection. The problem that a censoring access network can block packets to known proxies has been addressed
by several similar proposals [16, 18, 38]. They all use proxies, but in a way that still works despite the blocking.

A typical compound session in these proposals is shown in Figure 16. The access network of the session initiator is
filtering out packets from users to certain destinations, represented here by the “covert destination.” The initiator cannot
evade this censorship by using a false source name, because then replies from the destination will not be delivered to
the initiator (also, the network may be blocking everyone’s access to the site). The critical mechanism is that session
packets are routed through a friendly network where a forwarder recognizes that the packets must be treated specially,
and deflects them to a proxy similar to the proxy in Figure 15.

overt
destination

covert
destination

proxy
de�ecting
forwarder

censoring
�lter

initiator

simple session between initiator and proxy

censoring
network

1. simple session between
proxy and overt

2. simple session between
proxy and covert

friendly
network

Fig. 16. A deflected session between an initiator and a covert destination. In the simple session on the left, names in the IP header are
those of the initiator and overt destination; packets from the initiator are deflected to the proxy as an exception to normal forwarding.

For deflection to work, the initiator must give a hidden signal to the deflecting forwarder—one that the censoring
network is unlikely to recognize—so the deflecting forwarder knows which packets to deflect. In Cirripede [16], the
user registers with the friendly network; while the registration is active, all sessions initiated by the user are deflected.

In Figure 16, when the proxy first receives session packets, it initiates a TLS session to the overt destination. The TLS
handshake is completed end-to-end between initiator and overt destination, so that all packets (including a certificate in
plaintext) look normal to the censoring network. Once packet data can be encrypted, the proxy signals to the initiator
that it is in the session path, terminates the session to the overt destination, gets the name of the covert destination from
the initiator, initiates a session to the covert destination, and relays packets between the client and covert destination.
During the entire compound session, the packets seen by the censoring filter will have the overt destination in their
source or destination field.

The final problem to be solved is the placement of deflection forwarders in friendly networks. This can be viewed as a
game between the censoring network (and its friends) and the session participants (and their friends). The administrator
of the censoring network would like its outgoing packets to reach all or most of the public Internet without passing
through a network with deflection forwarding. The Cirripede proposal favors deflection forwarders in networks close
to the censoring network, so that many paths from the censoring network go through friendly networks, and the
censoring network would suffer too much if it stopped bridging to friendly networks. The decoy routing proposal favors
widespread deflection forwarders, in particular, in friendly networks close to a variety of important overt destinations.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 31

This way an initiator in the censored network can try several overt destinations until it finds one with deflection in the
path, which it knows when the proxy signals its presence after the TLS handshake.

The rules of this game may change in the future: networks may be willing to give some path-selection control to
cooperating networks and even user members, both of which are recommended by the SCION project [3]. Both now
and in the future, when it comes to security contests, it matters who (and where) your friends are. Social forces will
shape the Internet in their image, by defining its interest groups and alliances.

7.2 Overlays

An overlay is a virtual network layered on top of an underlay network (§3.3). We will first summarize the differences
between overlays and compound sessions, then show their use in two security designs.

7.2.1 Overlays versus compound sessions. Figure 17 shows a prototypical overlay session whose links are implemented
by sessions in one or more bridged underlay networks. All four machines are user members of their underlay networks.
From the viewpoint of the underlay networks, this looks very similiar to a compound session with three simple sessions
connecting user members. Yet the sessions in the underlay are completely independent of one another (b and c are not
proxies), and the overlay offers additional structures that are often useful, as follows:

• The overlay has its own namespace. Overlay names can be the same as in the underlays, but new names are
useful for multiple purposes. For example, a member of a private IP network with a private, unreachable name
can have a public, reachable name in an overlay.

• The overlay has its own routing. Overlay routing can insert application-specific middleboxes. In security designs,
routing in an overlay is often used to vary and conceal packet paths.

• The overlay has its own session protocols. We’ll see a good use of this in §7.2.3.
• The overlay has its own (geographical) span. It can unite allies in remote underlay networks.
• Sessions in the overlay and underlays have different durations. Overlay links—implemented by underlay sessions—
are often long-lived and reused by many overlay sessions, which minimizes setup time and computational
overhead (as in §4.4.2).

overlay
 network

underlay
 networks

a b c d

initiator forwarder middlebox acceptor

src = A, dst = B

src = a, dst = b src = b, dst = c src = c, dst = d

A B C D
link

implemented
by

session

Fig. 17. A prototypical overlay session.

7.2.2 Virtual private networks. Strictly speaking, “virtual private networks” (VPNs) are not networks, but rather a
technology for widening the geographic span of a private IP network such as an enterprise network. With VPN
technology, an enterprise network is composed with other public and private IP networks in two ways simultaneously:

Manuscript submitted to ACM



32 Pamela Zave and Jennifer Rexford

(i) as usual, it is bridged with them, and (ii) it is layered on them, because some links of the enterprise network are
implemented by sessions spanning other public and private IP networks. These relationships are illustrated by Figure 18.

enterprise
machine

employee
laptop

compute
client

VPN
 interface

IP interface NAT IP interface

VPN server IP interface

compute
server

enterprise
machine

V5

PSPNAT

V4 V8

forwarder

private IP network in a co�ee shop public Internet

enterprise network

enterprise network

src = V5,  dst = V8

src = PNAT,  dst = PSscrc = V2,
dst = PS

TCP session

compound ESP session

secure dynamic link

V2

Fig. 18. An enterprise network using VPN technology. A secure dynamic link in the enterprise network is implemented by an ESP
session in tunnel mode.

In the figure, there is a TCP session between an enterprise machine and an employee laptop currently located in a
coffee shop. The enterprise-network member on the laptop is described as a “VPN interface,” because it is an IP interface
plus VPN client. Before initiating the TCP session, it must first create a secure dynamic link to a VPN server in the
enterprise network. To create the dynamic link, the laptop’s VPN interface requests that its IP interface make an ESP
session (§4.3) to public IP name PS. The employee must also enter a password to authenticate his identity to the VPN
server. The ESP session happens to be compound, because it goes through a Network Address Translator (similar to a
proxy) in the coffee shop’s private IP network.

Viewed as an overlay network, the enterprise network uses VPN technology to allow a laptop in an insecure location
to participate fully in the enterprise network. Most importantly, the VPN server assigns the laptop’s member the name
V5 in the network’s private namespace. This name can be chosen according to the privileges the laptop’s owner has
within the enterprise network. Consequently, traffic filters in the enterprise network can see from the source and
destination fields of packets which policies should apply to the laptop’s sessions, and enforce them accordingly.

7.2.3 Overlays for anonymity. In §7.1.3 we showed how proxies in transit networks can provide session-initiating users
with privacy within their access networks and anonymity at the accepting endpoint. The weakness of this mechanism
is that the user has no privacy whatsoever from the proxy. The purpose of the public service Tor [8, 31] is to add to the
services above a high degree of privacy from the proxies.

Tor is an overlay network whose infrastructure members reside on the machines of volunteers world-wide. They are
fully connected by long-lived links, each of which is implemented by a TLS session in the public Internet. This shows
two of the ways Tor uses overlay properties: its membership unites allies across the globe, and its links are long-lived
and reused by many overlay sessions (which minimizes setup time and computational overhead). An infrastructure
member in Tor acts as a proxy within the overlay. Users also have Tor members on their machines. Each proxy has a
public key, which it uses (with a certificate) to authenticate itself when setting up links by means of TLS sessions.
Manuscript submitted to ACM



Patterns and Interactions in Network Security 33

Tor is layered between application networks and the public Internet. Applications use the same interface to get
TLS service from Tor as they would from the public Internet. User members query Tor directory servers to get lists of
available proxies, each described by its public key, IP name, and policies.

To make a TLS session for an application (when there is no prior state in place), a Tor member first chooses a random
route through several Tor proxies (this is why the proxies themselves do no routing). As with other overlay routing
schemes, this varies and conceals packet paths. Next the user member creates a compound session in Tor that goes
through the chosen proxies, as shown in Figure 19. The session protocol is the Tor “circuit” protocol, and each simple
session is a Tor circuit with its own circuit identifier.

circuit(UA)

circuit(UB)
circuit(UC)

K     (d)
UB

UA

UC

K     (K     (d) )
UC

UB
K     (K     (K     (d) ) )

UC

TCP session

Tor
user

Tor
proxy

Tor
proxy

Tor
proxy

public
server

U

A

B

C

Fig. 19. A compound session made by Tor. The first three simple sessions use the Tor circuit protocol, and go through the Tor network.
The last simple session uses TCP, and goes through the public Internet.

The important thing about circuits is that each one has a unique security association with the user member that
created it. To make the compound session in Figure 19, the user first creates a simple session (circuit) to A, and executes
a key-exchange protocol with A, so that each now knows a shared symmetric key KUA. Next the user uses circuit(UA)
to send to A an extend command telling it to create a new circuit to proxy B. Through the two associated circuits,
U and B execute a key-exchange protocol, after which each has a shared key KU B . Finally U tells B to extend the
compound session by creating a new circuit toC , withU /C key exchange. Once a compound session has been assembled
in Tor, it can be used to carry many TLS application sessions. In the background, the compound session is reconfigured
piece-by-piece about once a minute, to confuse adversarial observers who are analyzing traffic patterns.1

Tor users use the security associations to conceal packet data from all except the last Tor proxy. The data transmitted
on each circuit is multiply-encrypted as shown in the figure. When A receives a packet from U , it decrypts it before
forwarding it to B, but it cannot read the packet because it is doubly encrypted with keys KU B and KUC that are
unknown to A. For a similar reason, B cannot read it either.

To understand the rest of the Tor design, it is necessary to consider TLS as a separate protocol embedded in TCP. Tor
has a second session protocol, the stream protocol, embedded in the circuit protocol. Figure 20 shows all the session
protocols, with protocols above embedded in protocols below, used for a single TLS application session through Tor.

The stream protocol substitutes for TCP within Tor; there is a one-to-one correspondence between external TCP
sessions and Tor streams, and TCP data is simply reformatted for streams. There are two reasons for using streams
instead of TCP inside Tor: (i) if the data sent on Tor circuits were TCP packets, then proxyC would see their source and
destination fields in plaintext; (ii) the reliable, ordered packet delivery of TCP is not required within Tor, because all of
its links are implemented by TLS, and already have these properties.
1Spies know that Tor sessions are deliberately concealed, so they have reason to analyze side-channels such as packet timing and sizes. These attacks can
be successful in correlating packet streams coming into and out of Tor. Note that the adversarial observers can be Tor proxies, too.

Manuscript submitted to ACM



34 Pamela Zave and Jennifer Rexford

circuit(UA) circuit(UB) circuit(UC)

Tor

Tor
user

Tor
proxy

Tor
proxy

Tor
proxy

public
serverU A B C

TCPstream

TLS

Fig. 20. Session protocols and their embeddings, for a single TLS application session made through Tor. Sessions of the circuit protocol
last longer than application sessions.

When C has received enough stream packets to carry an HTTPS request with a domain name, it can complete the
compound session end-to-end. It sends a TCP SYN packet with its own IP name as source and the IP name of the
domain name as destination. After the TCP handshake, it continues converting data packets between the TCP and
stream-protocol formats, and forwarding them in both directions. The TLS handshake between U and the server goes
end-to-end, so thatU can validate the server’s certificate, and so that even C does not see plaintext packet data.

Unfortunately the Tor design for privacy has one serious deficiency, which is the fact that the final acceptor of
the TCP session can know that Tor is being used, because there are readily accessible lists of Tor nodes. Fraudsters,
spammers, and other criminals are big users of Tor, along with law-abiding people in need of privacy. Consequently
an increasing number of services are rejecting or otherwise discriminating against Tor users [20]. Tor protects the
reputation of its volunteer machines by allowing them to restrict their exiting TCP sessions or refuse to be exit proxies.
Some volunteers must shoulder this burden, however, or the service will not be available to those who really need it.

8 CONCLUSION

Modeling and security are tightly intertwined. Given a rigorous model of a network, security attacks, and defenses, we
can reason rigorously or even formally that the defenses will prevent the attacks—or at least mitigate them. Where
there are gaps in the model, i.e., possible real-world behaviors that the model does not describe, there are possible
attacks against which the defenses are useless.

As networks have become increasingly important in most aspects of daily life, their complexity has grown in
proportion, and the early models have become increasingly inadequate. In this tutorial, a new model has enabled us
to find a new and useful classification of security attacks, and to explain all common defenses by means of just four
patterns. There is a clear relationship between the attack categories and the defense patterns, because the categories are
based on which agents are the attackers, defenders, and potential victims, and some defenses are only available to some
defenders. The model has also helped us understand how the patterns interact with each other and with other aspects
of networking, which is a dimension of security that has received little prior attention. The modeling and defenses in
this tutorial are obviously not complete, yet we believe that any progress toward organized thinking about network
security will be helpful for building stronger defenses.

REFERENCES
[1] Arbor Networks. NETSCOUT Arbor’s 13th annual worldwide infrastructure security report. https://pages.arbornetworks.com/rs/082-KNA-

087/images/13th_Worldwide_Infrastructure_Security_Report.pdf.
[2] K. Argyraki and D. R. Cheriton. Active Internet traffic filtering: Real-time response to denial-of-service attacks. In USENIX ATC, 2005.
[3] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski. The SCION Internet architecture. CACM, 60(6):56–65, June 2017.
[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network configuration verification. In Proceedings of ACM SIGCOMM, 2017.

Manuscript submitted to ACM

https://pages.arbornetworks.com/rs/082-KNA-087/images/13th_Worldwide_Infrastructure_Security_Report.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/13th_Worldwide_Infrastructure_Security_Report.pdf


Patterns and Interactions in Network Security 35

[5] R. Canetti. Universally Composable Security: A new paradigm for cryptographic protocols. https://eprint.iacr.org/2000/067.pdf, 2019.
[6] D. D. Clark. The design philosophy of the DARPA Internet protocols. In Proceedings of SIGCOMM. ACM, August 1988.
[7] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace: Defining tomorrow’s Internet. IEEE/ACM Transactions on Networking,

13(3):462–475, June 2005.
[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In 13th USENIX Security Symposium, 2004.
[9] Dyn analysis summary of Friday October 21 attack. https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.
[10] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. Millstein. A general approach to network configuration analysis.

In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation, 2015.
[11] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most dangerous code in the world: Validating SSL certificates in

non-browser software. In ACM Conference on Computer and Communications Security, 2012.
[12] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceedings

of Symposium on Theory of Computing. ACM, 2013.
[13] T. Grandison and M. Sloman. A survey of trust in Internet applications. IEEE Communications Surveys and Tutorials, 3(4):2–16, 2000.
[14] M. Handley. Why the Internet only just works. BT Technology Journal, 24(3):119–129, July 2006.
[15] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion, traffic normalization, and end-to-end protocol semantics. In

Proceedings of the 10th USENIX Security Symposium, 2001.
[16] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov. Cirripede: Circumvention infrastructure using router redirection with plausible

deniability. In Proceedings of the ACM Conference on Computer and Communications Security, 2011.
[17] ITU. Information Technology—Open Systems Interconnection—Basic Reference Model: The basic model. ITU-T Recommendation X.200, 1994.
[18] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P. Mankins, and W. T. Strayer. Decoy routing: Toward unblockable Internet communication.

In Proceedings of the USENIX Workshop on Free and Open Communications on the Internet. USENIX, 2011.
[19] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time network policy checking using Header Space Analysis. In

Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation, 2013.
[20] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Paxson, S. J. Murdoch, and D. McCoy. Do you see what I see? Differential treatment of

anonymous users. In Proceedings of the Network and Distributed Security Symposium. Internet Society, 2016.
[21] T. Kiravuo, M. Sarela, and J. Manner. A survey of Ethernet LAN security. IEEE Communications Surveys & Tutorials, 15(3):1477–1491, 2013.
[22] A. Langley et al. The QUIC transport protocol: Design and Internet-scale deployment. In Proceedings of ACM SIGCOMM, 2017.
[23] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to distributed authorization. ACM Transactions on Information and

System Security, 6(1):128–171, February 2003.
[24] N. P. Lopes, N. Bjorner, P. Godefroid, K. Jayaraman, and G. Varghese. Checking beliefs in dynamic networks. In NSDI, 2015.
[25] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Controlling high bandwidth aggregates in the network. Computer

Communication Review, 32(3):62–73, July 2002.
[26] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2):113–131, February 1996.
[27] G. C. M. Moura, J. Heidemann, M. Muller, R. de O. Schmidt, and M. Davids. When the dike breaks: Dissecting DNS defenses during DDoS. In

Proceedings of the ACM Internet Measurement Conference, 2018.
[28] M. Nasr, A. Houmansadr, and A. Mazumdar. Compressive traffic analysis: A new paradigm for scalable traffic analysis. In ACM Conference on

Computer and Communications Security, 2017.
[29] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafo, K. Papagiannaki, and P. Steenkiste. The cost of the ‘S’ in HTTPS. In

Proceedings of ACM CoNEXT, 2014.
[30] D. Naylor, R. Li, C. Gkantsidis, , T. Karagiannis, and P. Steenkiste. And then there were more: Secure communication for more than two parties. In

Proceedings of ACM CoNEXT, 2017.
[31] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion routing. IEEE JSAC, 16(4):482–494, May 1998.
[32] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP traceback. In Proceedings of SIGCOMM. ACM, 2000.
[33] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing known attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS). Internet

Engineering Task Force Request for Comments 7457, 2015.
[34] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep packet inspection over encrypted traffic. In SIGCOMM, 2015.
[35] R. Sommer and V. Paxson. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of the IEEE

Symposium on Security and Privacy, 2010.
[36] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard. Systematic classification of side-channel attacks: A case study for mobile devices. IEEE

Communications Surveys & Tutorials, 20(1):465–488, 2018.
[37] J. Vertesi. My experiment opting out of big data made me look like a criminal. https://time.com/83200/privacy-internet-big-data-opt-out.
[38] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex: Anticensorship in the network infrastructure. In USENIX Security Symp., 2011.
[39] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mechanism to defend against DDoS attacks. In IEEE Symp.on Security and Privacy, 2003.
[40] P. Zave and J. Rexford. The compositional architecture of the Internet. Communications of the ACM, 62(3):78–87, March 2019.
[41] P. Zave and J. Rexford. Patterns and interactions in network security. arXiv 1912.13371 [cs:NI], 2019.

Manuscript submitted to ACM

https://eprint.iacr.org/2000/067.pdf
https://time.com/83200/privacy-internet-big-data-opt-out

	1 Introduction
	2 What is network security?
	2.1 A practical classification of network security attacks
	2.2 Relation to other definitions of security

	3 A model of networking
	3.1 Components of a network
	3.2 Functions of a network
	3.3 Composition of networks

	4 Cryptographic protocols
	4.1 Trust and identity
	4.2 Public-key cryptography and its uses
	4.3 Three IP cryptographic protocols
	4.4 Interactions between cryptographic protocols and other aspects of networking

	5 Traffic filtering
	5.1 Content-based traffic filtering
	5.2 Path-based traffic filtering
	5.3 Interactions between traffic filtering and other aspects of networking

	6 Dynamic resource allocation
	7 Compound sessions and overlays for security
	7.1 Compound sessions
	7.2 Overlays

	8 Conclusion
	References

